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Stages of Infection and Disease

• During the course of an infection, different stages or time periods can 
be distinguished regarding the infectivity and manifestations of 
symptoms in the infected individual. 



Incubation Period

• The incubation period is the time between infection with a disease and the development 
of symptoms.

• It plays an important role in the dynamics of disease transmission because it dictates 
when cases will be detected relative to individuals’ time of infection. 

• This delay must be accounted for when determining the true infectious burden and 
evaluating the effect of control measures based on symptomatic surveillance.

• While statements of a mean incubation period or range for the incubation period are 
common in the infectious disease literature, they are often too vague for use in dynamic 
models of disease transmission.

• Typically, in dynamic models, incubation periods are assumed to follow some statistical 
distribution.

• Common choices for this distribution are exponential, log-normal, Weibull, and gamma 
distributions.



Latent Period

• The latent period is the time between when an individual is infected 
and when he or she becomes infectious 

• While in some cases the latent period and the incubation period have 
the same length, for many diseases this is not the case. 

• Perhaps the most dramatic example of such a discrepancy involves 
HIV/AIDS, for which the incubation period can last years longer than 
the latent period.

• Care should be taken when reading the literature, as not all authors 
are precise in distinguishing the incubation period from the latent 
period, often referring to the latter as the former.





• When exploring the dynamics of epidemics, it is usually the latent period, 
rather than the incubation period, in which we are interested because the 
latent period has the more profound effect on the generation time, and 
hence epidemic growth.

• However, the incubation period may also be important, especially when 
attempting to interpret observed case counts, which may not include all 
infections that have already occurred.

• The distinction between the incubation period and the latent period is 
especially important when evaluating the effect of control methods based 
on symptomatic surveillance.

•



• If infectiousness proceeds symptom onset (i.e., the latent period is 
shorter than the incubation period), as in HIV, then interventions 
based on targeted controls toward symptomatic individuals are 
unlikely to be effective.

• Diseases where symptom onset is coincident with, or even proceeds, 
infectiousness (e.g., smallpox) are more likely to be controlled using 
methods based on symptomatic surveillance.

• Hence, the proportion of transmission that takes place before the 
onset of symptoms may be an important metric of controllability.26

• As with the incubation period, the latent period is usually modeled as 
following an exponential, lognormal, Weibull, or gamma distribution.

https://oncohemakey.com/infectious-disease-dynamics/#R26-6


Infectious Period

• The infectious period is clearly one of the most important 
determinants of infectious disease dynamics.

• The infectious period for an infection can range from days (e.g., 
influenza) to years (e.g., HIV) and plays an important role in 
determining the reproductive number for that disease.



• The dynamic effects of infectious disease control measures are often best understood by 
considering their effects on the infectious period. 

• The primary effect of treatment, in terms of epidemic dynamics, is to decrease the 
infectious period. Similarly, case isolation can be seen as decreasing the effective 
infectious period of those isolated.

• In some circumstances a treatment may increase the infectious period—for instance, 
supportive care that prevents death but does nothing to prevent transmission.

• The infectious and latent periods play a primary role in determining the generation time 
of an infection. 

• If infectiousness in evenly distributed across the infectious period, then the mean 
generation time will be equal to the mean latent period plus one-half the mean 
infectious period. 

• In general, infectiousness may not be uniform during the infectious period, though the 
mean timing of infection may still be determined through more sophisticated techniques



Generation Time

• The generation time (or generation interval) of an infectious disease is the time 
separating the onset of infection in an individual (the infector) and the time that 
person transmits to another individual (the infectee). 

• While the reproductive number dictates the number of infections produced by 
each generation of transmission, the generation time specifies a time scale at 
which these transmissions accumulate.

• The generation time is also referred to as the serial interval, a term coined by 
Hope-Simpson that is often used to refer to the time between symptom onset in 
successive generations of infection.21**

• The generation time is not fully observable, as the precise moment of infection is 
difficult, if not impossible, to detect.

• A proxy that is often used to estimate the generation time is the time separating 
the onset of symptoms in infector and infectee (i.e., the serial interval).





• The serial interval is the duration between symptom onset of a 
secondary case and that of its primary case. 

• For infections in which cases can be infectious before symptom onset, 
it is possible that the serial interval attains negative values because 
some of the secondary cases might develop symptoms before their 
primary case did so.
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• For estimation of the serial interval, we use data of the confirmed 
cases of COVID-19 outbreak in the Qom, Iran beginning on February 
20, 2020. Information about 51 index cases with laboratory-
confirmed COVID-19 and their 318 close contacts was used. 
Confirmed cases were selected from the first cases of the COVID-19 
outbreak in Qom and tried to select with the maximum variety of age, 
sex, and severity of the disease. Anyone who has been in contact with 
a confirmed case (less than 2 meters away) during his/her 
symptomatic period, including 4 days before symptom onset, 
considered as close contact. 



• To determine the serial interval several distributions were fitted on 
the time interval between primary cases and secondary cases and the 
best fitting model was a gamma distribution with a mean of 4.55 days 
and a standard deviation of 3.30 days (Figure 2). 



• Close contact between 21 patients (21 infector-infectee pairs), 
including 12 primary cases and 21 secondary cases were confirmed. 
The Weibull distribution provides the best fit for the serial interval of 
the COVID-19 outbreak in Kermanshah. The mean (μ) and standard 
deviation (SD) of the SI were estimated 5.71 and 3.89 days, 
respectively (Fig 2).



library(R0)

Find the best-fitting GT distribution for a series of serial interval 

est.GT(infector.onset.dates = NULL, infectee.onset.dates = NULL, 
serial.interval = NULL, request.plot = FALSE, ...)





The Reproductive Number

• The reproductive number, R, is the number of secondary cases expected to 
be caused by a single, typical infected individual in a population with some 
level of susceptibility.

• If the population is fully susceptible, this is termed the basic reproductive 
number and denoted as R0

• The reproductive number is the primary metric used to quantify the 
transmission of a disease in infectious disease dynamics; it provides a 
measure of how fast an outbreak will grow across subsequent generations 
of transmission.

• For instance, for influenza R0 ≈ 2; hence we would expect a single infected 
case to cause 2 cases after one generation, 4 cases after two generations, 8 
cases after three generations, and so on. 



• For measles, where R0 ≈ 11, we would expect to see 11 cases in one 
generation, 121 cases in two generations, and 1331 cases in three 
generations.

• However, the observed speed of growth does not depend only on R0, 
as the average time between generations of transmission varies by 
disease (generation time) and the number of people available to be 
infected decreases over time as the pool of susceptible individuals is 
depleted by infection.



• While R0 refers to the number of cases caused by a typical individual in a 
completely susceptible population, R refers to the number of cases caused 
by a typical infectious individual given the proportion of individuals still 
available to be infected at the current time.

• R changes over time and is sometimes denoted Rt, whereas R0 refers to a 
theoretical time 0 when the entire population is susceptible.

• R accounts for the reduction in transmission due to some individuals being 
immune .

• For instance, if R0 is 4, but half of a primary case’s contacts are immune due 
to previous infection or vaccination, then we would expect that case to 
infect only 2 individuals; in this scenario, R would be equal to 2.

• In general, if st is the proportion of the population still susceptible to 
infection at time t, then Rt is R0st.







• The basic reproduction number R0 is defined as the (average) number 
of new infections generated by one infected individual during the 
entire infectious period in a fully susceptible population.

• It can be also understood as the average number of infections caused 
by a typical individual during the early stage of an outbreak when 
nearly all individuals in the population are susceptible. 

• The basic reproduction number reflects the ability of an infection 
spreading under no control. 



• When the size of susceptible population is limited, the quantity, 
effective reproduction number  Re, is used instead of R0 . Similarly, the 
quantity, controlled reproduction number Rc, should be used to 
describe the ability of disease spreading when interventions (such as 
quarantine, isolation, or traffic control) are taking place.

• Hence a good measure of any intervention is to reduce Rc . Note that 
the disease will decline and eventually die out if Rc <1





• Library(R0)

• Library(earlyR)

• Library(epiestim)



• Estimation of reproduction numbers for disease outbreak, based on 
incidence data.

• The R0 package implements several documented methods.

• Depending on the methods requested by user, basic reproduction 
number (commonly denoted as R0) or real-time reproduction number 
(referred to as R(t)) is computed, along with a 95% Confidence 
Interval. 

• Sensitivity analysis tools are also provided, and allow for investigating 
effects of varying Generation Time distribution or time window on 
estimates.



Estimate R from exponential growth rate

• est.R0.EG 

• Estimate R from exponential growth rate.

• est.R0.EG(epid, GT, t = NULL, begin = NULL, end = NULL, date.first.obs
= NULL, time.step = 1, reg.met = "poisson", checked = FALSE, ...)

• data(Germany.1918) mGT<-generation.time("gamma", c(3, 1.5))

• est.R0.EG(Germany.1918, mGT, begin=1, end=27)

• ## Reproduction number estimate using Exponential Growth ## R : 
1.525895[ 1.494984 , 1.557779 ] 



Estimate the reproduction number by 
maximum likelihood
• est.R0.ML

• Two maximum likelihood methods for estimatig the reproduction ratio.

• The first (and used by default in this package) assumes that the serial 
interval distirbution is known, and subsequently the likelihood is only 
maximised depending on the value of R. 

• The second method can be used if the serial interval distribution is 
unknown: in that case, the generation time is set to follow a Gamma 
distribution with two parameters (size, shape), and the optimization
routine finds the values of R, size and shape that maximize the likelihood



• However, the epidemic curve must be long enough to account for a whole 
generation. The authors showed that this is achieved when the cumulated 
amount of incident cases reaches 150. 

• When using this method, the flag unknown.GT must be set to TRUE. GT 
must still be provided with a R0.GT-class object, however its mean and sd
will be recycled as starting value for the optimization routine.

• data(Germany.1918) 

• mGT<-generation.time("gamma", c(2.45, 1.38)) est.R0.ML(Germany.1918, 
mGT, begin=1, end=27, range=c(0.01,50))

• # Reproduction number estimate using Maximum Likelihood method.

• # R : 1.307222[ 1.236913 , 1.380156 ]



Estimate the time dependent reproduction 
number using a Bayesian approach
• Estimate the time dependent reproduction number using a Bayesian approach. 

• All known data are used as a prior for next iteration 

• data(Germany.1918) 

• mGT <- generation.time("gamma", c(3,1.5)) 

• SB <- est.R0.SB(Germany.1918, mGT) 

• ## Results will include "most likely R(t)" (ie. the R(t) value for which the computed 
probability is the highest), along with 95% CI, in a data.frame object 

• SB # Reproduction number estimate using Real Time Bayesian method. 

• # 0 0 2.02 0.71 1.17 1.7 1.36 1.53 1.28 1.43 ...



Estimate the time dependent reproduction 
number
• est.R0.TD

• Estimate the time dependent reproduction number according to Wallinga & Teunis.

• data(Germany.1918)

• mGT<-generation.time("gamma", c(3, 1.5))

• TD <- est.R0.TD(Germany.1918, mGT, begin=1, end=126, nsim=100) 

• # Warning messages: 

• # 1: In est.R0.TD(Germany.1918, mGT) : Simulations may take several minutes. 

• # 2: In est.R0.TD(Germany.1918, mGT) : Using initial incidence as initial number of cases. 

• TD

• # Reproduction number estimate using Time-Dependent method. 

• # 2.322239 2.272013 1.998474 1.843703 2.019297 1.867488 1.644993 1.553265 1.553317 
1.601317 ...



Library(epiestim)

• We can run estimate_R on the incidence data to estimate the reproduction 
number R.

• For this, we need to specify

• i) the time window(s) over which to estimate R and

• ii) information on the distribution of the serial interval.

• For i), the default behavior is to estimate R over weekly sliding windows. 

• For ii), there are several options, specified in the method argument.

• The simplest is the parametric_si method, where you only specify the mean and 
standard deviation of the SI.



Estimating R on sliding weekly windows, with a 
parametric serial interval
• In this example, we only specify the mean and standard deviation of 

the serial interval. In that case an offset gamma distribution is used 
for the serial interval. 

• res_parametric_si <- estimate_R(Flu2009$incidence, 
method="parametric_si",

config = make_config(list( mean_si = 2.6, std_si = 1.5)) )





Estimating R with a non parametric serial 
interval distributiond
• If one already has a full distribution of the serial interval, and not only 

a mean and standard deviation:

• res_non_parametric_si <- estimate_R(Flu2009$incidence, 
method="non_parametric_si", config = make_config(list( si_distr = 
Flu2009$si_distr))



Estimating R accounting for uncertainty on the 
serial interval distribution

• config <- make_config(list(mean_si = 2.6, std_mean_si = 1, 
min_mean_si = 1, max_mean_si = 4.2, std_si = 1.5, std_std_si = 0.5, 
min_std_si = 0.5, max_std_si = 2.5)) 

• res_uncertain_si <- estimate_R(Flu2009$incidence, method = 
"uncertain_si", config = config)



Estimating R and the serial interval using data 
on pairs infector/infected
• In estimate_R, we now allow the serial interval distribution to be 

directly estimated, using MCMC, from interval censored exposure 
data. The reproduction number is then estimated using the posterior 
distribution of the SI, hence accounting for the uncertainty associated 
with this estimate.

• As the epidemic progresses, newly collected exposure data can be 
incorporated  to update the serial interval estimate.




