

Steno Diabetes Center Copenhagen

# β cell dysfunction during T1D development

Reza Yarani

Senior Postdoctoral research fellow, PhD

Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark



### The participants will get familiar with:

- Different terms in T1D setting
- Factors contributing to <u>β cell dysfunction</u>
- The suggested **mechanisms for β cell dysfunction**
- How can we study the β cell (dys)function and rescue approaches





### Type 1 Diabetes (T1D)



### $\beta$ cell mass and function

### The total amount of released insulin depends on the:

- 1. Absolute number of BC in the islets (BC mass).
- 2. Output of each of these cells (BC function).

5





### Changes in $\beta$ cells mass and function in T1D



**Pre-Diabetic stage** 

Oβ cell

### Prediabetic phase of T1D



Shortly before clinical manifestation of diabetes the prolonged intensified  $\beta$  cell workload and autoimmunity results in:

- L. Total cellular exhaustion and
- 2. Enhanced cell death

Modified from Chen et al 2017

Which are leading to a massive decrease in  $\underline{\beta}$ <u>cell mass</u> and the onset of hyperglycemia

**Black line**:  $\beta$  cell mass

Blue line:  $\beta$  cell function.

The color-coded background indicates the intensity of beta cell workload and stress caused by immune infiltration, metabolic demand and hyperglycemia.

### Onset of hyperglycemia

#### Type 1 Diabetes Normo-Overt Prediabetes Remission Diabetes glycemia diabetes $\beta$ -cell mass B-cell function "honeymoon phase," disease progression $\beta$ -cell workload/stress high low

#### Black line: $\beta$ cell mass

Blue line:  $\beta$  cell function.

The color-coded background indicates the intensity of beta cell workload and stress caused by immune infiltration, metabolic demand and hyperglycemia.

Modified from Akirav et al 2008 & Chen et al 2017



### $\beta$ cell dysfunction

- Complex interplay between:
  - ✓ Genetic predisposition
    - HLA
    - INS
    - .....
  - ✓ Environmental factors
    - Infant and adult diet
    - Vitamin D
    - Trace minerals
    - Early-life exposure to virus (enterovirus, rubella, mumps, rotavirus, parvovirus or cytomegalovirus)
    - Decreased gut-microbiome diversity
  - Immune systems and β cells dialogue that vary between individual cases



### Genetic factors

#### GWA studies have identified >60 T1D risk loci – most with low ORs

Expressed in human pancreatic islets (marked with \*)



Pociot et al, 2010

### HLA

Less than 20% of the T1D cases are associated with mutations in the MHC-I, in which haplotypes HLAB\* 3906 or HLA-A \* 2402 set susceptibility towards T1D

Around 40% of the genetic risk associated to T1D is related to HLA region class II.

*Especially HLA-DR and HLA-DQ, where the haplotypes with the greatest association are DRB1 \* 0401 or \* 0405 and DQB1 \* 0301 (DR4-DQ8)* 

#### **Chromosome 6** Tel Short arm Tel long arm Cen **HLA** region 6p21.3 C4 C2 TNF GF E DP Class II Class III Class I Complement + MHC-II +antigenic MHC-I inflammatory factors processing activity 11

### INS



### Candidate genes affecting β cells mass and function

### • Genomic features:

- Expression quantitative trait loci (eQTLs)
- Transcription factor-binding sites
- DNase hypersensitive sites
- Histone modifications

• ....

| Gene (Chromosome) | Variant(s)                       | Function/pathway affected                           |
|-------------------|----------------------------------|-----------------------------------------------------|
| INS (11p15.5)     | INS VNTR<br>class I<br>rs7111341 | β-cell expression level                             |
|                   | rs11564705ª                      |                                                     |
| IFIH1 (2q24.2)    | rs1990760<br>rs3747517           | MDA5 signalling                                     |
| GLIS3 (9p24.2)    | rs7020673                        | β-cell development                                  |
|                   |                                  | β-cell apoptosis                                    |
|                   |                                  | GLUT2 expression                                    |
| PTPN2 (18p11.21)  | rs1893217<br>rs2542151ª          | Inflammation and virus-induced β-<br>cell apoptosis |
| CTSH (15q25.1)    | rs3825932<br>rs11856301ª         | Cytokine-induced apoptosis                          |
|                   |                                  | Insulin transcription                               |
| BACH2 (6q15)      | rs11755527                       | Cytokine-induced apoptosis                          |
| TYK2 (19p13.2)    | rs2304256                        | Inflammation and virus-induced β-<br>cell apoptosis |
| CLEC16A           | rs12444268                       | Autophagy/mitophagy                                 |
| (16p13.13)        | rs12708716                       |                                                     |
|                   | rs11865121 <sup>a</sup>          | Insulin secretion                                   |
|                   | Pociot (2017)                    | Clinical & Translational Immunology                 |



### Environmental factors



### Insulitis

### Autoantigens:

- Insulin
- Glutamate decarboxylase (GAD)
- Protein tyrosine phosphatase
- Insulinoma-associated antigen-(IA-) 2, and IA-2b

Up to 90 % of newly diagnosed T1D subjects have autoantibodies to one or more of these antigens

#### Spatiotemporal Dynamics of Insulitis in Human Type 1 Diabetes *Wedgwood et al, 2016*



### Immunological Priming/Insult







### β cell destruction mechanisms

Apoptosis

- Fas/Fas-L
- II-1β. IL-1β
- TNF- $\alpha$

 $\circ$  Necroptosis

 $\circ$  Incomplete Autophagy

### $\circ \textbf{Endoplasmic reticulum stress}$

(mainly T2D and later stage T1D)

- Glucotoxicity
- Lipotoxicity
- Amyloid Polypeptide

### Oxidative stress

 $\circ$  Pyroptosis



https://nanolive.ch/applications/overview/single-cell-cellculture-analysis/cell-cycle-analysis/



### Necroptosis

The term introduced in the year 2003 by Chan et al





### Studying the $\beta$ cell death – *In vitro*

#### • In vitro:

- β cell models:
  - EndoC (Human)
  - 1.1B4 (Human)
  - INS-1E (Rat)
  - MIN6 (Mouse)
- Isolated islets
- Dispersed  $\beta$  cells
- hESCs, hiPSCs

#### Assays:

- 1. Morphometric analyses
  - e.g. islet size, proliferation, apoptosis

#### 2. Hormone secretion

- Insulin and amylin, Glucagon, somatostatin, Pancreatic polypeptide, Ghrelin
- 3. Intracellular signaling
  - e.g. Ca2þ, NADPH, exocytosis, mitochondria, electrophysiology
- 4. Protein biochemistry
- 5. Omics (Genomics, transcriptomics, ...)
- 6. In vitro differentiation



### Studying the $\beta$ cell death – *In situ*



- Histological analyses
- Pancreas tissue slices

#### Assays:

#### 1. Morphometric analyses

• e.g. islet size, proliferation, apoptosis, immune cells infiltration

#### 2. Pancreas tissue slices

- e.g. islet size, proliferation, apoptosis, immune cells infiltration
- 3. Hormone secretion
- 4. Intracellular signaling
  - e.g. Ca2b, electrophysiology



### Studying the $\beta$ cell death – *In vivo*



- Metabolic tests
- Noninvasive imaging
- Transplantation

Both T2D and T1D

Cersosimo et al, 2014

Intravenous glucose tolerance test (IVGTT) Oral glucose tolerance test (OGTT) Meal tolerance test (MTT) Homeostasis model assessment (HOMA)

### How to rescue $\beta$ cells?

We are very limited with treatment opportunities!

Islet of



#### In most cases **Insulin injection** is the ultimate way!





## Application of Stem Cells and Bioprinting for type 1 Diabetes

### Shahram Parvaneh

PhD Candidate,

Regenerative Medicine and Cellular Pharmacology Laboratory,

Department of Dermatology and Allergology, Faculty of Medicine,

University of Szeged, Hungary.

### Introduction: Mesenchymal stem cell

- 1. Adherence to plastic
- 2. Surface markers expression (BM-MSC)
- 3. MSC must **differentiate** to adipocytes , osteoblasts and chondroblasts *in vitro*

| POSITIVE MARKERS | NEGATIVE MARKERS |
|------------------|------------------|
| CD73             | CD45             |
| CD90             | CD34             |
| CD105            | CD133            |
| CD146            | HLA-DR           |
| CD117 (c-Kit)    | CD19             |



- Li, N. and Hua, J. 2016. Interactions between mesenchymal stem cells and the immune system, Cell. Mol. Life Sci. 2017
- Settimio P., Sayantani B., Jonathan W., Strategies to develop endogenous stem cell-recruiting bioactive materials for tissue repair and regeneration Advanced Drud Delivery Reviews 1 October 2017<sup>25</sup>

#### MSCs can act as a "mobile drug store"



#### **Pancreatic Islet Transplantation In Type 1 Diabetes**

- Pancreatic islet cell transplantation is currently the only curative cell therapy for type 1 diabetes.
- Insulin-secreting construct from human sources (allografts) or animal sources (xenografts) have been evaluated.
- Due to lack of donors, whole organ and islet transplantation is not a viable option for diabetes treatment.
- Rejection of transplanted islets by the host immune system is one of the most significant obstacles.





#### **Application of Stem cells in T1D**



### **β-Islet Encapsulation**

- Encapsulation of cellular grafts within biocompatible scaffolds has been proposed.
- Encapsulation strategy that could create a semi-privilege environment that stimulates natural insulin secretion in response to hyperglycemia preserving cell viability and protec versus immune cells and Ab exchange of nutrients and metabolites.

#### **Applied Materials in encapsulation**

- Various types of naturally derived polymers (e.g., alginate, collagen, gelatin, fibrin, and fibronectin).
- Synthetic polymers (e.g., poly lacticco-glycolic acid (PLGA), polysulfone (PSU), polylactic acid (PLA), and polyvinyl alcohol (PVA)) have been evaluated.



### **Encapsulation Classification**

#### **Encapsolated Islets are classified according to their sizes:**

a) Microcapsule is typically prepared in the size of  $100 \mu m$ –1mm and contains one or several islet.

**b)** Macrocapsule is usually made in 3–8 cm size and contains multiple islet.

#### Limitation of Microencapsulated Islets:

- Difficult to control the localization of islets during implantation. ٠
- Efficiency of the transplanted microcapsule. •

- Limitation of Macroencapsulated Islets
  Hypoxia occurs at the core of capsule
  Limits the Islets loading density and potential for scale up.





#### **Bioprinting (Mimic Human Tissues & Organs)**

- 3D bioprinting is a technique for positioning biochemical materials and alive cells in a stacking layer by layer at a desired location.
- 3D structure can be fabricated by controlling the space of the positioned components.
- Can manufacture capsules capable of accommodating cells for a transplantable level and inhibit hypoxia by promoting vascularization through structure and releasing molecules.
- Allows the deposition of a wide array of cell types, biomaterials (bioink) and bioactive factors in a precise order to simulate native tissue environment and support cell survival for building artificial tissues and organs.



### 3D bioprinting classified into two systems depending on the materials:

#### Scaffolding system:

- A synthetic polymer which should has biocompatibility and biodegradability mainly applied to the system.
- For example: polylacitc acid (PLA), poly(Lactide-co-glycolic acid) (PLGA), and polycaprolactone (PCL) approved by FDA are mainly used as synthetic polymers.
- Finally, the 3D structure containing the cells is completed.

#### Scaffolding free system:

- A **hydrogel** is mostly used for this system.
- The hydrogel can contains biomaterials, alive cells, growth factors and large amount of water that can provide the optimal environment for cells.
- Hydrogel is solidified by physical or chemical crosslinking to stack layer by layer to complete the 3D structure.



### Coaxial printing

ARC Centre of Excellence for

### Now you most probably:

- Are familiar with different terms in T1D setting
- Can Identify the contributing factors in  $\beta$  cell dysfunction
- Can identify the suggested mechanisms for β cell dysfunction
- Know how we study the β cell (dys)function and what are the available rescue approaches





### Steno Diabetes Center Copenhagen

### Thanks!



reza.yarani.01@regionh.dk



shparvaneh79@gmail.com

Learning is a never-ending story

*The ones who light up for the others will never remain in darkness*