

Angiogenesis & VEGF Signaling

By: Kamran Mansouri

Medical Bilogy Research Center, Kermanshah University of Medical sciences

Definitions:

- Angiogenesis: formation of new blood vessels from existing ones
- Vasculogenesis: formation of blood vessels from endothelial progintor cells

In adult: endothelial cells rarely divide

J. Folkman, M.D. February 24, 1933–January 14, 2008

A tumor may persist in a diffusion-limited state, usually not more than 2 mm in diameter, with cell proliferation balanced by cell death, for many months or years. It rarely causes significant damage in this dormant phase, and often goes undetected.

Angiogenesis greatly improves the tumor's blood supply, providing it with an almost unlimited supply of oxygen and nutrients and a system for the removal of waste products, thus permitting rapid growth. In addition, the proximity of large numbers of blood vessels increases the likelihood of tumor cells entering the bloodstream and being transported to remote parts of the body.

Neoplastic tissue usually exceeds the oxygen diffusion limit when tumor cell layers accumulate to a thickness of approximately 150–200 mm from a nearest open microvessel. Tumor cells beyond this limit undergo apoptosis. Therefore, almost any tumor that has reached a diameter of >10–100 mm, is probably already neovascularized.

Nature Reviews | Folkman, J (2007)

VEGF family FGF family **PDGF** TGF family Angiogenin Angiopoietin-1/Tie2 TNF-a HGF/scatter factor IGF family IL-8 Nitric oxide Prostaglandins Tissue factor MMPs

.

Angiostatin/other plasminogen kringles Antithrombin (cleaved) Endostatin Fibronectin fragments Prolactin Prothrombin kringle-2 Vasostatin IFNs TIMPs Angiopoietin-2 EMAP-II

Figure 2 Role of hypoxia in tumour angiogenesis. Because of the irregular pattern and organization of the tumour vasculature, some cells in tumours are located more than 100 μ m (the diffusion limit for oxygen) away from blood vessels and become hypoxic (red-to-blue gradient indicates progressive hypoxia). Tumour cells survive fluctuations in oxygen tensions, in part because clones are selected in hypoxic tumours that switch to a proangiogenic phenotype. HIFs increase transcription of several angiogenic genes (for example, genes encoding VEGF, PDGF-BB and NOS). HIFs also affect cellular survival/apoptosis pathways. Inset: relationship between the distance of tumour cells from nearby vessels and their degree of hypoxia (blue symbols) and acidosis (red symbols)²⁴.

HIF: hypoxia inducible factor VEGF: vascular endothelial growth factor

Anglogenesis	Growth & Survival	Glucose metabolism	Invasion & Metastasis	Miscellaneous
EG-VEGF	Cyclin G2	HK1	KRT14	DEC1,2
ENG	IGF-BP1,2,3	HK2	KRT18	ETS-1
LEP	WAF-1	AMF/GP1	KRT19	NUR77
LRP1	TGF-α	ENO1	VIM	CA 9
TGF-B3	TGF-B3	GLUT1	MIC2	p35srj
VEGF	ADM	GLUT3	CATHD	IIF
VEGFR	EPO	GAPDH	Collagen type V (α1)	AK3
ADM	NOS2	LDHA	FN1	Ecto-5'-nucleotidas
ET1	IGF2	PFKBF3	MMP2	Cerulopasmin
an-AR	NIP3	PFKL	PAI1	Transglutminase 2
HO1	NIX	PGK1	Prolyl-4-hydroxylase α(1)	
NOS2	RTP801	PKM	UPAR	
	ET1	TP1	AMF	
	VEGF	ALDA	c-MET	
	VEGFR	ALDC	LRP1	
	Transferrin	LEP	TGF-α	
	Transferrin-R			
	MDR			

Fig. 2. HIF-1 target genes. α1B-AR: α1B-adrenergic receptor, ADM: adrenomedullin, AK3: adenylate kinase 3, ALDA: aldolase A, ALDC: aldolase C, AMF: autocrine motility factor, CA9: Carbonic anhydrase 9, CATHD: cathepsin D, ENG: endoglin, ET1: endothelin-1, ENO1: enolase 1, EPO: erythropoietin, FN1: fibronectin 1, GLUT1: glucose transporter 1, GLUT3: glucose transporter 3, GAPDH: glyceraldehyde-3-P-dehydrogenase, HK1: hexokinase 1, HK2: hexokinase 2, IGF2: insulin-like growth factor-2, IGF-BP1: IGF-factor-binding protein 1, IGF-BP2: IGF-factor-binding protein 2, IGF-BP3: IGF-factor-binding protein 3, ITF: intestinal trefoil factor, KRT14: keratin 14, KRT18: keratin 18, KRT19: keratin 19, LDHA: lactate dehydrogenase A, LEP: leptin, LRP1: LDL-receptor-related protein 1, MDR1: multidrug resistance 1, MMP2: matrix metalloproteinase 2, NOS2: nitric oxide synthase 2, PFKBF3: 6-phosphofructo-2-kinase/fructose-2:6-biphosphatase-3, PFKL: phosphor-fructo kinase L, PGK 1: phosphoglycerate kinase 1, PAI1: plasminogen-activator inhibitor 1, PKM: pyruvate kinase M, TGF-α: transforming growth factor-α, TGF-β3: transforming growth factor-β3, TPI: triosephosphate isomerase, VEGF: vascular endothelial growth factor, UPAR: urokinase plasminogen-activator receptor, VEGFR2: VEGF receptor-2, VIM: vimentin. The figure has been adapted from Ref. [30].

Tumor blood vessels are tortuous, highly permeable, and dilated, and show differential coverage and a loose association of perivascular cells along the vessels and weakened EC junctions

Heterogeneity of TECs - con.

2. Origin of TECs

> EPCs or circulating endothelial precursor cells contribute to tumor

angiogenesis

- ➢ ECs are heterogeneous
- > Transdifferentiation to ECs

Breast cancer

Nature Reviews | Drug Discovery

Folkman J (2007)

Nature Reviews | Drug Discovery

XTumors induce angiogenesis to obtain oxygen and nutrients

★4 major steps of endothelial cells in angiogenesis

- 1. Breaking through of basal lamina that envelops existing blood vessels
- 2. Migration towards source signal
- 3. Proliferation
- 4. Formation of tubes

VEGF Family

★Consists of VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E

×VEGF-A is the most potent angiogenic protein

★This isoform signal through VEGF receptor 2 (VEGFR-2), the major VEGF signaling receptor that mediates sprouting angiogenesis (called kinase-insert domaincontaining receptor [KDR] in humans and fetal liver kinase 1 [flk-1] in mice).

Nature Reviews | Neurology

Functions of the VEGF family of receptors

VEGFR-1 ^{1,2}	Crucial to embryonic angiogenesis Does not appear to be critical in pathogenic angiogenesis
VEGFR-2 ^{1,3}	Most important VEGF receptor in tumor angiogenesis Mediates the majority of VEGF angiogenic effects
VEGFR-3 ^{1,4}	Found only in lymphatic endothelial cells Associated with lymph node metastasis

Function ^{1,2}	Mechanism
Proliferation	Activation of mitogen-activated protein kinases
Permeability	Vesicovascular organelles Endothelial fenestrations Opening of junctions between adjacent endothelial cells
Invasion	Induction of metalloproteinases uPA, uPAR, TTPA
Migration	Activation of FAK, p38, nitric oxide
Survival	Induction of PI3K/Akt, Bcl2, A1, survivin, XIAP, or FAK Inhibition of caspases
Activation	Upregulation of integrin expression Alteration of cell cytoskeleton

VEGF signaling pathways

Ras/MAP kinase pathway - Gene expression and proliferation

Akt/PI3K pathway - cell survival

NOS pathway - vascularpermeability

PKC pathway - cell proliferation and vascularpermeability

FAK/Paxillin pathway - cytoskeletal rearrangement and cell migration

Ras/MAP kinase pathway

Ras activates MAP-Kinase Pathway

1- MAPKKK 2- MAPKK 3- MAPK

MAPK: Mitogen-activated Kinase

(there are three MAP-Kinase cascades: MEK/ERK P38 JNK)

Akt/PI-3 Kinase Pathway and Survival

VEGF PKB, PDK: PI(4,5)P2 (PDK: PI-dependent kinase) CYTOSOL Ser/Thr kinases PH PI(3,4,5)P3 domains activated phosphorylation PI 3-kinase dissociation and activation activated receptor of PKB by PDK1 tyrosine kinase PDK1 PKB inactivated BAD 14-3-3 active PKB protein BAD PHOSPHORYLATION NHIBITION OF OF BAD APOPTOSIS inactive deathinhibitory protein active deathinhibitory protein

Figure 15–60. Molecular Biology of the Cell, 4th Edition.

