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1  | INTRODUC TION

Cardiovascular diseases (CVD) remain the chief cause of death in 
both Western and developing societies.1 Despite the enormous 

growth in knowledge and advances in prevention and treatment, ap-
proximately one out of three people in the USA still die from CVD.2 
In addition to traditional risk factors such as hypercholesterolemia, 
homocystinemia, hypertension, hyperglycemia, cigarette smoking, 
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Abstract
Translocation of microbiome-derived lipopolysaccharide (LPS) to the bloodstream 
(metabolic endotoxaemia) is associated with a significantly increased risk of 
cardiovascular diseases (CVD); however, the direction of this association is not fully 
understood. It has been revealed by some studies that alterations in the intestinal 
microbiota (dysbiosis) lead to increased intestinal permeability and translocation of 
LPS to the blood circulation. LPS may trigger toll-like receptor 4- (TLR-4) mediated 
inflammatory responses; this could lead to a chronic low-grade pro-inflammatory 
condition named metabolic endotoxaemia (ME), which is typically observed in CVD 
patients. ME is promoted by increased intestinal permeability. Moreover, dysbiosis 
leads to production of trimethylamine-N-oxide (TMAO), a gut bacterial metabolite 
suggested as a new risk factor in CVD development. Probiotics, extensively reviewed 
for decades, are live microorganisms which, when taken in adequate amounts, have 
beneficial effects on the host metabolism. Prebiotics are a type of dietary fibre that act 
as nourishment for the good bacteria in the gut and decrease the population of pathogen 
bacteria that produce greater amounts of endotoxins. Although an association has 
been postulated between ME and CVD, the results of studies investigating the role 
of antibiotic therapy in preventing the disease have been inconsistent. In this review, 
we discuss how prebiotics and probiotics modulate gut microbiota and consequently 
might help with prevention and/or treatment of CVD associated with ME.
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and aging, metabolic endotoxaemia (ME) has been suggested to con-
tribute to endothelial injury and development of CVD.3,4 Nowadays 
attentions have been attracted to the role of ME in many fields of 
medicine particularly inflammatory diseases like atherosclerosis 
and other types of CVD.5 In ME, microbiome-derived lipopolysac-
charide (LPS) from the gut microbiota passes through the intestinal 
mucosa to enter the bloodstream, and may represent an important 
mediator of low-grade systemic inflammation.6 Previous studies es-
pecially in patients with chronic kidney disease (CKD) have shown 
that high levels of endotoxin lead to production of pro-inflamma-
tory cytokines and may predispose these patients to CVD.7 More 
recently, increased level of trimethylamine-N-oxide (TMAO), a gut 
bacterial metabolite, has been suggested as a new risk factor in CVD 
development.

Changes in gut microbiota (dysbiosis) seem to contribute to 
ME. Under normal conditions, the intestinal epithelium acts as an 
impervious barrier to prevent LPS translocation; however, some 
conditions may alter this protective function.8 Dysbiosis is defined 
as “any change to the components of resident commensal commu-
nity relative to the community found in healthy individuals”. Each 
of the following three conditions are generally classified as dys-
biosis: (a) loss of valuable microbial organisms, (b) expression of 
pathobionts of possibly beneficial microorganisms, (c) loss of gen-
eral microbial variety.9 In states of dysbiosis, the intestinal barrier 
increases in permeability as a result of a disruption to the regula-
tion of the epithelial cell-to-cell tight junction protein network.10 
A compromised intestinal barrier can be associated with bacterial 
translocation from the gut into the systemic circulation increasing 
the risk of ME.11,12

Disruption of the gut barrier and translocation of LPS and other 
bacterial metabolites have been shown to affect many aspects of 
human health, through various gut-to-organ axes; some examples in-
clude gut-brain axis, gut-heart axis, gut-skin axis, etc. The interaction 
between the gut and a specific organ has received much attention in 
current years. Although gut microbiota imbalance has been postu-
lated to be associated with CVD through endotoxaemia, it is yet to 
be explored whether dysbiosis leads to inflammatory-mediated CVD 
risk, or CVD dysregulates gut microbiota composition by impairing 
blood supply of the gut.13

In the current review, we will debate findings on probable mech-
anisms connecting the gut microbiota and onset of endotoxemia. 
Additionally, we will discuss the potential relationship between ME 
and CVD. Finally, we will review the evidence on the potential role of 
prebiotics/probiotics in modulation of gut microbiota and host me-
tabolism with regard to the development of ME.

2  | RESULTS

2.1 | Selected articles

A flow diagram of the study selection is summarized in Figure 1. In 
total, 6895 articles were retrieved, of which 2560 were duplicates, 

resulting in 4335 non-duplicated publications. Of these 4335 
publications, 4131 articles did not meet the inclusion criteria and 
were excluded. A further 22 articles were excluded due to insufficient 
information. After exclusion, 19 articles met the eligibility criteria 
and were included in this review.

2.2 | Study characteristics

Characteristics and the main outcomes of the 19 articles included 
in the current review are summarized in Table 1. The studies were 
conducted between 2007 and 2019. Of all the identified studies, 
three studies were conducted in animal and 16 studies used a 
randomized clinical trial design. The trials group ranged in duration 
from 3 to 28 weeks.

2.3 | Gut microbiota

The gut microbiota (formerly called gut flora) is the complex 
community of microorganisms including bacteria, archaea and 
eukaryotes that live in the digestive tract of humans.8 The majority 
of the GI-tract bacterial composition represent only two bacterial 
phyla, the Firmicutes and the Bacteroidetes. The gut microbiota 
offers many profits to the host, through a range of physiological 
functions such as strengthening gut integrity or affecting the 
intestinal epithelium, harvesting energy, protecting against 
pathogens and regulating host immunity.14,15 However, there is a 
potential for these mechanisms to be disrupted as a result of altered 
microbial composition, known as dysbiosis.16 Many factors can 
modify the balance of gut microbiota and allow for translocation of 
luminal contents to the inner layer of the intestinal wall.15 The normal 
gut barrier, supported by tight junctions, prevents translocation 
of whole bacteria or bacterial fragments/products into the sub-
mucosal compartment.14 In the ‘leaky gut’ situation, infiltration of 
bacteria or related components into sub-mucosal space results in 
stimulation of mast cells and lymphocytes. The activation of these 
immune cells leads to production of pro-inflammatory cytokines, 
which further induces chronic inflammation and ME.17

Balanced gut microbiota plays a critical role in maintaining im-
mune and metabolic homeostasis and protecting against patho-
gens. However, numerous studies have demonstrated that gut 
microbiota alteration (dysbiosis) can lead to increased cardiomet-
abolic risk factors such as hypertension, elevated cholesterol, and 
insulin resistances, which greatly increase the risk of CVD.8,18 
Numerous mechanisms have been proposed to be involved in 
the role that gut microbiota alterations play in the aetiology of 
CVD; stimulation of immune system, short chain fatty acid pro-
duction, chronic low-grade inflammation, lipoprotein and bile acid 
metabolism, and altered endocannabinoid receptor system tone 
are among these mechanisms.19 More recently, more attention has 
been focused on the effect of metabolic endotoxemia (ME) in the 
aetiology of CVD.20
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2.4 | Metabolic endotoxaemia

A two to three-fold increase in circulating LPS levels is termed 
'metabolic endotoxaemia’.21 Components from gut microbiota, such as 
LPS, lipoteichoic acid, peptidoglycan, flagellin and bacterial DNA, can 
cause immune system activation. An animal model showed that modest 
rises (~1.5 fold) in endotoxin level or injection of 300 mg/kg/day of LPS 
could lead to increased fat deposition, insulin resistance, and chronic 
inflammation.22 A recent study has demonstrated that systemic 
LPS administration led to damages in heart mitochondrial DNA and 
protein by oxidative stress. They revealed that LPS up-regulated 
endothelial cell adhesion molecules, and LPS associated favourably 
with the pro-atherogenic fraction.23 Although endotoxaemia is not 
necessarily equivalent to increasing LPS, many have defined metabolic 
endotoxaemia as “a situation of chronically elevated plasma LPS”. In 
patients with septic shock, the concentration of endotoxin level is often 
elevated a 1000 folds or higher compared to healthy controls.20 On 
the contrary, Cani et al defined metabolic endotoxaemia as “a situation 
of chronically elevated plasma LPS at levels 10–50 times lower than 
during septic conditions”.21 However, there are more than 20 assays 
for detection of endotoxin markers, which can lead to cell damage, and 
theoretically multiple organ failure.24,25

Lipopolysaccharide is thought to be a major inducer of inflam-
matory responses, suggesting a possible association between in-
testinal LPS and CVD. The gut microbiota is a huge reservoir of 

this endotoxin. There are 1012 bacterial cells per gram of luminal 
content. Therefore, more than 1 g of LPS may be detected in the 
intestinal lumen. LPS is one of the main components of the exter-
nal cell wall of Gram-negative bacteria. Thus, it is expected that 
changes in the barrier permeability facilitates translocation of LPS 
and other endotoxins into the bloodstream, and the following met-
abolic consequences.26 LPS binds to LPS-binding protein (LBP). 
The complex LBP-LPS is presented to cluster of differentiation 14 
(CD14) on innate immune cells, which is expressed mainly by mac-
rophages, neutrophils, and dendritic cells; this subsequently medi-
ates signal transduction, including nuclear factor kappa B (NF-κ B) 
activation via TLR4, and contributes to the activation of innate and 
adaptive chronic inflammatory responses.27 In addition, results 
from animal studies suggest that LPS exposure directly induces 
oxidation of low-density lipoprotein 28,29 (Figure 2).

Increased gut permeability and subsequent elevated circulating 
LPS has been shown in many cardiovascular conditions.30 Previous 
studies have postulated that CVD is accompanied with both alter-
ations in intestinal barrier, and increased microbial translocation. 
However, it is not yet clear whether dysbiosis is the cause or effect 
of CVD. Furthermore, some taxa of oral microbiota have also been 
detected in human atherosclerotic plaques. These data are sup-
ported by previous studies that found epidemiological links between 
periodontal diseases and CVD.31,32 In other words, periodontal dis-
eases may be associated with CVD.

F I G U R E  1   Flow diagram of the 
literature search and study selection 
process
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As mentioned above, gut microbiome alterations observed in 
some diseases leads to an increase in serum levels of some gut me-
tabolites such as TMAO.33 On the other hand, dysbiosis leads to 
increased production of TMAO, which may also contribute to the 
pathogenesis of CVD.34 For the first time, Kallio et al, introduced 
this metabolite endotoxaemia as the consequence of dysbiosis 
which was assumed to have a role in CVD development.35 Animal 
and epidemiologic studies have shown that higher levels of TMAO 
are directly linked to the increased incidence of major adverse car-
diovascular events (MACE).36,37 Indeed, some studies have demon-
strated that increased TMAO levels may better predict incident 
cardiovascular events than traditional risk factors such as LDL and 
C-reactive protein (CRP).38 In fact, the smallest microbiota changes 
even without disrupting gut permeability, cause metabolic complica-
tions and metabolite endotoxaemia.

Helicobacter pylori offers another example of how the gut mi-
crobiota of the host can have a major impact on health.39 Indeed, 
H. pylori is directly or indirectly involved in the development of CVD. 
Activated release of toxins, pro-inflammatory factors, abnormal lipid 
metabolism, and altered iron metabolism are the major mechanisms 
through which H. pylori contributes to cardiovascular abnormali-
ties.40 Although, H. pylori infection might play a role in increasing 
the circulating levels of endotoxaemia in cardiovascular patients,41 

consequently facilitating the onset of CVD, its main effect in devel-
opment of heart diseases might be through alteration of immune 
system, resulting in systemic endotoxaemia.42

Small intestine bacterial overgrowth (SIBO), also termed bac-
terial overgrowth, characterized by the presence of abnormal and 
excessive numbers of bacteria in the small intestine, has been 
associated with an increased risk of CVD.43 Although numerous 
speculations have been suggested regarding the crosstalk be-
tween SIBO and atherosclerosis, the exact underlying mechanism 
remains unclear. Recently, Ponziani et al provided evidence that 
SIBO predisposes patients to development of atherosclerosis 
through reduced matrix GIa-protein (MGP) activation as well as 
arterial stiffening.44 Furthermore, Oher et al revealed that SIBO 
increases endotoxaemia via activation of the Toll-like receptors 
(TLR) signalling pathway which eventually leads to CVD.45 In short, 
despite the association between SIBO and CVD revealed in previ-
ous studies, no conclusions can be drawn about causality of the 
association.

In addition to the bacterial components that cause ME, certain 
bacterial metabolites such as TMAO can also exert negative ef-
fects on the circulatory system and increase chronic inflammation. 
TMAO is a biological compound produced by gut microbiota from 
dietary phosphatidylcholine, choline, and carnitine.46 Alteration of 

F I G U R E  2   The gut epithelium is an efficient barrier that prevents absorption of lipopolysaccharide (LPS) derived from Gram-negative 
gut microbiota. Dysbiosis is associated with higher gut permeability leading to metabolic endotoxaemia. LPS is recognized by TLR4, which 
is presented to cluster of differentiation 14 (CD14); this subsequently mediates signal transduction, including nuclear factor kappa B (NF-
κB), contributing to the activation of innate and adaptive chronic inflammatory responses. Gut microbiota-derived metabolism of dietary 
PC/choline and L-carnitine produces trimethylamine, which is further metabolized to trimethylamine-N-oxide (TMAO). TMAO, as a pro-
atherogenic compound, may increase the risk of developing atherosclerotic heart disease. Probiotics, prebiotics, and antibiotic treatment can 
reduce LPS absorption and its serum levels. Promotion ; Inhibition 
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gut microbiota as identified by increased Prevotella and decreased 
Bacteriodes species in gut microbiome leads to higher level of 
TMAO and susceptibility to CVD.34 In addition, elevated TMAO 
level is a new prognostic marker in patients with ischaemic and 
non-ischaemic cardiomyopathy.47 Moreover, a new study pro-
posed that TMAO may be considered as a biomarker to assess gut 
barrier permeability.48

There is evidence that animals fed with a Western diet have 
greater plasma TMAO concentrations. The augmented levels of 
TMAO is known to contribute to over expression of pro-inflamma-
tory cytokines such as tumour necrosis factor-α (TNF-α) and inter-
leukin-1β (IL-1β) and also attenuation of anti-inflammatory cytokines 
such as IL-10.37 Moreover, endothelial dysfunction is another patho-
logic feature that has been related to TMAO. TMAO also alters cho-
lesterol and sterol metabolism, which could act as an important risk 
factor for CVD.34

2.5 | Gut permeability and metabolic endotoxaemia

The gut epithelium is an efficient barrier that prevents absorption of 
LPS derived from Gram-negative gut microbiota. Diabetes, high-fat 
diet, obesity, and CVD are associated with higher gut permeability 
leading to ME.21 Currently, there are some invasive methods used 
to detect the gut permeability, which may not be appropriate for 
clinical purposes. A simple non-invasive method is typically using 
large molecule oligosaccharide (eg, lactulose or polyethylene glycols 
(PEGs) of 1500–4000 kDa) and low-molecular-weight sugars such 
as mannitol and L-rhamnose or concentration ratio of lactulose 
to mannitol (L/M ratio). The sugar molecules such as mannitol are 
supposed to permeate both transcellularly and paracellularly, so that 
the ratio of these sugars in plasma or excreted in the urine reflects 
intestinal permeation.49,50 It must be noted that small intestine is 
technically sterile, and use of L/M ratio as an indicator for small 
intestinal permeability would be misleading, unless SIBO exists. 
Sucralose has been used instead of lactulose as a measure of whole 
gut permeability.51

Another indirect method is to assess the tight junction proteins 
such as occludin, zonulin-1, claudin-1, claudin-4 in serum which are 
increased in leaky gut.52 Additionally, LBP has also been used as a 
gut–blood barrier permeability marker.53 More newly, TMAO has 
been proposed as a promising biomarker of gut barrier function.48 
More recently, plasma levels of citrulline, and also assessment of the 
inflammatory marker calprotectin in faeces have been used as a sur-
rogate marker of small bowel epithelial cell mass.54 Although many 
techniques exist for evaluation of intestinal permeability, calculating 
the excretion ratio of lactulose/rhamnose or lactulose/mannitol are 
more commonly used.55

Assessments of intestinal permeability are regularly used syn-
onymously with the term “gut barrier function,” while these are 
not the same. For example, intestinal permeability changes do not 
essentially reveal changes in antimicrobial production, mucus se-
cretion, or IgA secretion.56 Taken together, results of all these tests 

are influenced by changes in many factors including gastric empty-
ing, intestinal peristalsis, gut blood flow, bacterial degradation, and 
renal clearance. Therefore, there is no single standard way to eval-
uate the gut permeability, and it is suggested that a combination of 
these tests be performed for assessment of intestinal permeability.

2.6 | Key point

Potential pathways of the association between gut dysbiosis and CVD 
have been demonstrated in various animal and human studies. The 
intestinal microbiota has a deep influence on mucosa barrier function 
and the nutritional/metabolic status of its ‘host’.19 Dysbiosis allows 
bacterial products such as lipopolysaccharide, or peptidoglycans to 
enter the circulation.17 Furthermore, the dysbiosis can directly impact 
the cytokine production from epithelial cells and innate immune 
cells.21 These mediators also enter the circulation. LPS itself, and also 
the inflammatory state it causes may induce the production of oxidized 
low-density lipoprotein.13,29 In addition to metabolic endotoxaemia, 
increased TMAO as a gut metabolite may also exert adverse effects 
on cardiovascular system. TMAO, even in the absence of leaky gut, 
has been proposed to augment CVD risk. Prebiotics/probiotics could 
possibly attenuate these adverse effects.33

3  | DISCUSSION

3.1 | Gut dysbiosis and cardiovascular disease

Dysbiosis can be implicated in the pathogenesis of CVD through 
(a) increased LPS (endotoxaemia) which can promote the formation 
of atherosclerotic plaque by acting on TLR4,17 (b) affecting the 
metabolism of bile acids (BAs), and the production of TMAO which 
can impair cholesterol catabolism and induce chronic inflammation,37 
and (c) contributing to risk factors such as hypertension and 
atherosclerosis through chronic inflammation and dyslipidaemia.5 
In the following sections, we will debate findings on probable 
mechanisms connecting the endotoxaemia and CVDs. Furthermore, 
we will discuss the evidence on the potential role of prebiotics/
probiotics in modulation of gut microbiota and endotoxaemia.

3.2 | Endotoxaemia and cardiovascular disease

It is well established that patients with cirrhotic cardiomyopathy 
have higher LPS levels, and are significantly predisposed to diastolic 
dysfunction. This finding supports a potential role of ME in the 
aggravation of cardiomyopathy in cirrhotic patients.57 In addition, 
previous studies have shown a relationship between systemic 
inflammation and increased CVD.6 However, the potential mechanisms 
for the observed associations still remain largely unclear. Typically, 
endotoxaemia is present in early CVD and also at the early phases of 
some diseases.57 Additionally, endotoxaemia may activate systemic 
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inflammatory cascade that can not only have an influence on the 
cardiovascular systems, but also have a distant effect on intestine 
and its permeability.13 Chronic inflammation following endotoxaemia 
might be a possible mechanism for the association between dysbiosis 
and CVD.6 Indeed, increased levels of inflammatory markers and LPS 
have been found in CVD subjects.58 It is, however, uncertain whether 
increased gut permeability can lead to the development of CVD or 
whether it is a consequence of a cardiovascular condition.59

Endotoxaemia (without sepsis) is characterized by presence of 
LPS, the major glycolipid component of the outer membrane of Gram-
negative bacteria in the blood.8 ME stimulates release of pro-inflam-
matory cytokines, resulting in systemic inflammation. Components 
of Gram-positive bacteria's cell wall such as lipoteichoic acid or pep-
tidoglycan are recognized by pattern-recognition receptors (PRRs) 
such as NOD-like receptors and TLRs. TLRs are PRRs that recognize 
microbe-associated molecular patterns, and include many types, but 
TLRs2 and TLRs4 are the most important ones. LPS and peptidoglycan 
(PGN) trigger TLR4 activation, and TLR2 recognizes lipoteichoic acid 
(LTA) from Gram-positive bacteria.60,61 LPS not only induces endothe-
lial damage, but also increases expression of surface adhesion mole-
cules such as CD14 on inflammatory cells, and stimulates the release of 
pro-inflammatory cytokines.62 Heightened activation of the immune 
system in post endotoxaemia may predispose the animals to the de-
velopment of cardiovascular disease. Epidemiological studies have also 
shown that ME is associated with CVD.41 However, the role of ME in 
CVD remains unknown, if one does not consider the part inflammation 
plays in this regard; thus, further investigation is warranted.

It has been proposed that ME increases hypertriglyceridaemia, 
and development as well as progression of fatty liver.63 Also, LPS 
seems to increase endothelial lipase, which has been suggested to 
cause a reduction in HDL.59 These findings suggest a strong link 
between ME and increased CVD risk factors. Endotoxins can also 
induce plaque formation and progression of atherosclerotic lesions, 
and release of other molecules from endothelial cells involved in 
pro-inflammatory processes.64

Several mechanisms have been proposed to be involved in the 
role of TMAO (considered as metabolite endotoxaemia) in the ae-
tiology of CVD; activating macrophages to accumulate cholesterol, 
changing cholesterol metabolism in different organs, and inhibiting 
reverse cholesterol transport pathway are some of the most im-
portant mechanisms.47 Moreover, elevated TMAO levels promote 
inflammation and oxidative stress, and impair vascular function.37

3.3 | Gut microbiota and endotoxaemia

Dysbiosis may contribute to ME, leading to systematic inflammation, 
and CVD.5 A healthy intestinal barrier is important to avoid microbial 
translocation. Evidence from clinical and animal studies show that 
dysbiosis is associated with an increased risk of CVD.34,35 Moreover, 
several lines of evidence suggest that increased gut permeability, 
as assessed by tight junction proteins in serum, contribute to 
cardiometabolic risk factors. Surprisingly, hypercholesterolaemia 

paradoxically improves survival in cardiac cachexia, and attenuates 
cardiac cachexia and inflammation, suggesting a hypothesis that a 
diet with high-fat content, could decrease gut permeability and 
subsequently metabolite endotoxaemia.65,66

As noted before, gut microbiota alterations lead to development 
of different diseases, such as CVD. Gut microbiota regulates multiple 
physiological processes of the host; the resident bacteria act as an 
energy sources in the gut lumen, influence production of leptin and 
other hormones, regulate immune functions and receptor ligands, 
and are also substrates for the host enzymes. In order to identify 
how gut microbiota alterations influence inflammation, high-fat diet 
was used in experimental settings. High-fat diet increased plasma 
endotoxin levels and resulted in dysregulation of the gut microbiota 
by increasing the ration of Firmicutes to Bacteroidetes. The analyses 
showed that LPS was responsible for the onset of ME in this animal 
model.67

Germ-free animals have been used to study the probable role of 
the gut microbiota in development of some disorders.68 Germ-free 
animals are animals that have no microorganisms living in or on them. 
Such animals are raised within germ-free isolators in order to control 
their exposure to viral and bacterial agents.69 Germ-free mice fed a 
normal chow diet had a lower endotoxin production, whereas germ-
free mice colonized with LPS-producing germs showed increased 
fat mass, and developed metabolic diseases.70 Earlier investigations 
have revealed that colonization of germ-free mice with microbiota 
considerably changes the transcription of numerous mediators in-
volved in the regulation of metabolic functions.71,72 Turnbaugh et 
al observed that colonization of germ-free mice with the microbiota 
from the obese mice resulted in a considerably higher percentage of 
total body fat than that resulting from colonization with a microbiota 
from lean mice.71 These results elucidate that gut microbiota is an-
other causal factor in pathophysiology of cardiac risk factors.

To conclude, endotoxaemia and its resultant inflammation is not 
observed in germ-free mice, but develops only after feeding of high-
fat diet or injection of LPS to these animals; this in part demonstrates 
the effect of gut microbiota dysbiosis in this regard.

There is inconsistency regarding the relationship between 
high-fat diet and elevated circulating endotoxin. Pendyala et al 73 
demonstrated that fasting plasma endotoxin was significantly raised 
following 30 days of isocaloric, high-fat (40% fat of total energy) 
feeding in apparently healthy subjects. On the contrary, 2 months 
of high-fat (45% fat of total energy) diet did not influence fasting 
plasma LPS in healthy subjects, in another study.74 Apparently, the 
association between high-fat diet and ME is more complex in hu-
mans, and seems to be influenced by the time course of feeding, the 
macronutrient (and possibly energy) composition, and the age of the 
individuals.

This evidence suggests that changes in gut microbiota composi-
tion could be responsible for increased endotoxaemia, which in turn 
would trigger the development of inflammation and cardiovascular 
risk factors. On the other hand, antibiotic treatment intensely re-
duces the local intestinal microbiota and LPS. Similar results were 
observed when a probiotic was administered to mice; Bifidobacteria 
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administration in newborn mice led to lower intestinal endo-
toxin concentrations and inflammatory cytokine (IL-6, and TNF-α) 
production.75

3.4 | Pre/probiotics and metabolic endotoxemia

Elevated levels of LPS could be the result of increased endotoxin 
production by a change in gut microbiota; the latter is characterized 
by decreased proportion of beneficial bacteria (Lactobacillus spp., 
Bifidobacterium spp., and Bacteroides-Prevotella spp.) to some 
Firmicutes species.76 Increased intestinal permeability characterized 
by an increased expression of epithelial tight junction proteins such 
as Zonulin and Occludin are involved in this mechanism. This effect 
can be completely restored by modulation of gut microbiota. Adam et 
al, demonstrated that specific changes in gut microbiota composition 
by feeding arabinoxylans oligosaccharides to obese mice led to 
an increase in Bifidobacteria and a decrease in Lactobacilli, which 
consequently improved inflammation and gut barrier integrity. Also, 
they noticed that the tight junction proteins were up-regulated in 
the colon after the intervention.77

As mentioned above, probiotics can decrease gut permeability 
and endotoxemia. The mechanisms for probiotics beneficial effects 
on barrier function are still unknown. Probiotics have been shown 
to produce bacteriocins, which inhibit pathogenic bacteria and 
regulate intestinal epithelial cells anti-apoptotic and proliferation 
responses.78,79 Moreover, probiotics secrete some proteins that 
protect intestinal epithelial cells from oxidative stress by inducing 
cytoprotective heat shock proteins.80 The beneficial activity of pro-
biotics may be exerted through secreting metabolites of lactic acid 
bacteria. For example, Ménard et al showed that metabolites of lac-
tic acid bacteria (Bifidobacterium breve) may be capable of increasing 
intestinal barriers function.81 It is noteworthy that LAB products 
seem to limit access of LPS to CD14 receptors on monocytes/mac-
rophages. Intestinal macrophages do not express CD14 under basal 
conditions. This effect was associated with lowered NF-κB signalling 
in immune cells and decreased inflammation.82 Taken together, two 
mechanisms may explain the role of probiotics in the intestinal en-
vironment: (a) a direct inhibitory effect on gut permeability; and (b) 
effect of active bacterial metabolites on epithelial barrier.

Another possible effect of probiotics is restoring the composi-
tion of the gut microbiota community. Several studies suggest that 
dysbiosis may contribute to cardiovascular disease risk, and that 
probiotic supplementation can have favourable effects by normal-
izing the gut microbiota.83 An irregular profile of gut flora with sub-
stantially lower ratio of Bifidobacteria and Lactobacilli to Firmicutes 
species can affect endotoxin production.84 Also, previous studies 
have indicated beneficial therapeutic effects of Lactobacillus spp. 
and other probiotics in patients with CVD.85 In fact, probiotic in-
terventions with Bifidobacteria and Lactobacillus spp. restored 
numbers of beneficial species and led to a significant decrease in 
endotoxin levels. Another possible mechanism could arise from 
the putative role of the Bifidobacterium spp in maintaining the gut 

barrier. Bifidobacterium spp do not degrade intestinal mucus glyco-
proteins like other pathogenic bacteria do, and enhance microvillus 
environment by averting permeability and bacterial translocation.86 
It has been shown that products of prebiotics including short chain 
fatty acids (SCFAs) act as an energy substrate for the colonocytes 
and have a trophic effect on mucosa which in turn increases villus 
height and crypt depth, and leads to a thicker mucosal layer in the 
colon.87,88 Cani et al indicated 17 that prebiotic treatment following 
high-fat diet led to higher endogenous GLP-2 production and im-
provement of the mucosal barrier function, consequently improving 
tight junctions, decreasing plasma LPS concentrations and reducing 
inflammatory and oxidative stress. Altogether, these data led the au-
thors to hypothesize that there was a positive correlation between 
GLP and tight junction proteins (ZO-1, occludin), and that probiotics 
may positively impact ME. Further studies are needed to evaluate 
the effect of different probiotics strains on gut microbiota profile 
and endotoxaemia in subjects with CVD.

In vitro models of ME have recently proposed that some probi-
otics strains such as Lactobacillus rhamnosus and Lactobacillus casei, 
protect epithelial barrier function against Escherichia coli-induced 
endotoxaemia.89 Moreover, treatment with probiotics induced a va-
riety of changes in the expression of different TLRs. In one study 
conducted by Schmitz et al, administration of probiotics into the 
intestine of healthy dogs and those with enteropathies led to in-
creased expression of TLR ligands. In addition, production of TNFα 
and IL-17A proteins decreased in plasma.90

The gut microbiota can be restored by non-digestible, fermentable 
carbohydrates, which are known as prebiotics, including inulin, fruc-
tooligosaccharide, oligofructose, and xylose; prebiotics consumption 
leads to selective stimulation of growth and/or activities of beneficial 
bacteria in the colon.91,92 In this regard, gut microbiota modulation by 
prebiotic increases bacterial fermentation products, mostly SCFAs, 
which act as an energy substrate for the colonocytes, subsequently 
having a trophic effect on mucosa.93 The potential of SCFAs to help 
form a thicker mucosal layer in the jejunum and colon, may explain 
their effect on decreasing gut permeability and subsequent ME.92 
On the other hand, prebiotic intake leads to increased proportion 
of beneficial bacteria in the gut microbiome. A recent study demon-
strated that administration of prebiotics (oligofructose) could raise 
Bifidobacterium spp. in gut microbiota, which improved gut perme-
ability.67 To additionally support our concept, a summary of studies 
which found changes in levels of endotoxaemia or endotoxin-related 
markers by prebiotics are presented herein (Table 1). A recent study 
conducted by Dehghan et al, showed that inulin administration (as 
prebiotics) for 8 weeks, could modulate inflammation and metabolic 
endotoxemia in women with type 2 diabetes.91

Former studies demonstrated that increased Bifidobacterium 
reduced intestinal endotoxin formation, and improved intestinal bar-
rier function through improving intestinal permeability and a GLP-
2-dependent mechanism.67 Also, available data have shown that a 
selective gut microbiota change by increasing endogenous GLP-2 
production, contributes to improvement of gut barrier permeabil-
ity.17 Beside the supposed role of the SCFAs and particular bacterial 

sps:https://www.frontiersin.org/articles/10.3389/fimmu.2015.00223/fullT1
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strains, the precise mechanism underlying the relationship between 
prebiotic-induced changes in the gut microbiota and enhanced gut 
barrier function has not been defined yet.

4  | CONCLUSION

Human studies have indicated that endotoxaemia may lead to 
inflammation and cardiometabolic consequences. This review 
reported the potential benefits of prebiotics/probiotics therapy 
for cardiovascular health, probably by reducing endotoxaemia. 
Although many of these studies have suggested a positive effect of 
pre/probiotics on ME, we point out that the claim for the favourable 
effects of these nutraceuticals in cardiovascular diseases is still in its 
infancy, and requires more comprehensive and well-designed clinical 
trials. In particular, evidence from human studies on the association 
between ME and CVDs is insufficient compared to animal studies. 
As mentioned above, preliminary evidence suggests that antibiotic 
therapy suppresses endotoxin and TMAO levels; however, the 
stability of that effect by long-term use of these agents remains 
unknown. Therefore, seeking for alternative methods for modulating 
the gut microbial community, either through food additives or 
prebiotics/probiotics administration is needed. Further studies are 
warranted to establish whether prebiotics/probiotics therapies can 
significantly reduce cardiovascular risk through decreasing ME and 
metabolite endotoxaemia.

5  | MATERIAL AND METHODS

To find relevant studies published prior to July 2019, a literature 
search conducted in the PubMed, Scopus, Embase, Cochrane Library, 
ProQuest, and Google Scholar electronic databases using the 
keywords (“probiotic” OR “lactobacillus” OR “bifidobacterium” OR 
“saccharomyces” OR “Escherichia coli” OR “yeast” OR “prebiotic” OR 
“inulin” OR “fructooligosaccharide” OR “fructo-oligosaccharide” OR 
“FOS” OR “galactooligosaccharide” OR “galacto-ligosaccharide” OR 
“GOS” OR “oligofructose” OR “synbiotic” OR “metabolic endotoxemia” 
OR “gut microbiota” OR “dysbiosis” OR “gastrointestinal microbiome” 
OR “lipopolysaccharide” OR “peptidoglycans”) And (“cardiovascular” 
OR “heart disease” OR “atherosclerosis” OR “hypertension” OR 
“blood pressure” OR “cholesterol” OR “triglycerides” OR “HDL” OR 
“LDL” OR “hs-CRP” OR “CRP” OR “inflammation” OR “oxidative 
stress” OR “LPS” OR “TMAO” OR “TLRs” OR “IL-6” OR “TNF-α” 
OR “SCFAs”). The search was limited to English language studies 
published before July 2019.

5.1 | Eligibility criteria

The eligibility criteria for entering the study were as follows: (a) all 
clinical trials which evaluated the effect of probiotics and probiotics 
on the metabolic endotoxaemia (ie endotoxin) and cardiovascular 

disease. (b) All animal studies which evaluated the effect of probiotics 
and probiotics on the metabolic endotoxaemia and cardiovascular 
disease and (a) in vitro models (b) letters, (c) comments, (d) short 
communications, and (e) studies with insufficient information (eg, 
published in non-English-languages or studies that did not provide 
access to full text) were excluded.

5.2 | Data extraction

The titles and abstracts of the eligible papers were screened 
independently by two researchers and studies were excluded if they 
did not meet the eligibility criteria. In the next step, full-text articles 
were examined based on type of study, study subjects, study design, 
daily dose, and duration of intervention and main outcome.
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