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epitopes of four Klebsiella pneumoniae fimbriae antigens
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Ghadiria and Alisha Akyaa

aInfectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; bCellular and Molecular
Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
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ABSTRACT
Klebsiella pneumoniae (K. pneumoniae) is a causative agent of severe infections in humans. There is no
publically available vaccine for K. pneumoniae infections yet. Here, using comprehensive immunoinfor-
matics methods, T-cell-specific epitopes of four type 1 fimbriae antigens of K. pneumoniae were pre-
dicted and evaluated as potential vaccine candidates. Both CD8þ (class I) and CD4þ (class II) T-cell-
specific epitopes were predicted and the epitopes similar to human proteome were excluded.
Subsequently, the windows of class-II epitopes containing class-I epitopes were determined. The
immunogenicity, IFN-c production and population coverage were also estimated. Using the 3D struc-
ture of HLA and epitopes, molecular docking was carried out. Two best epitopes were selected for
molecular dynamics studies. Our prediction and analyses resulted in the several dominant epitopes for
each antigen. The docking results showed that all selected epitopes can bind to their restricted HLA
molecules with high affinity. The molecular dynamics results indicated the stability of system with min-
imum possible deviation, suggesting the selected epitopes can be promising candidates for stably
binding to HLA molecules. Altogether, our results suggest that the selected T-cell-specific epitopes of
K. pneumoniae fimbriae antigens, particularly the two epitopes confirmed by molecular dynamics, can
be applied for vaccine development. However, the in vitro and in vivo studies are required to authenti-
cate the results of the present study.

Abbreviations: ANN: Artificial neural network; Comblib: Combinatorial peptide libraries; CPORT:
Consensus prediction of interface residues in transient complexes; HLA: Human leukocyte antigen; MD:
Molecular dynamics; RMSD: Root mean square deviation; RMSF: Root mean square fluctuation; SMM:
Stabilized matrix method; TIP3P: Transferable intermolecular potential with 3 points
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1. Introduction

Klebsiella pneumoniae is a Gram-negative bacterium that
resides in the environment (soil, water, etc.) and the gastro-
intestinal tract of mammals including humans. In humans, it
can cause infection if gains entry to the blood circulation
and other sterile tissues (Piperaki et al., 2017).

Various approaches have been tested to combat the anti-
microbial resistance related problems in pathogenic bacteria
including the recent progress in bioinformatics which has
provided novel tools to identify potential drug targets
(Miryala et al., 2018; Sugumar et al., 2014). However, the
emergence of strains resistant to various antibiotics by pre-
senting several resistance mechanisms as well as the hyper-
virulent strains greatly narrow down the therapeutic options
for K. pneumoniae infections. Consequently, this problem has
attracted a great attention for vaccine development (Malathi
et al., 2019; Miryala et al., 2020; Piperaki et al., 2017).

The development of an effective vaccine would be a great
help to control the K. pneumoniae infections. Due to the
safety concern, whole cell vaccines that consist of multiple
proteins are not considered as perfect vaccines. On the other
hand, no completely effective single antigen candidate has
been found so far for K. pneumoniae and attempts for find-
ing a good vaccine candidate are still ongoing.

Four virulence factors of K. pneumoniae have been well
characterized, namely fimbriae, lipopolysaccharide, capsule,
and siderophores. These virulence factors assist this oppor-
tunistic pathogen to circumvent the host immune defenses
(Paczosa & Mecsas, 2016; Shon et al., 2013). Type 1 and type
3 fimbriae in K. pneumoniae facilitate adherence to biotic
and abiotic surfaces and mediate epithelial cell invasion and
biofilm formation (Piperaki et al., 2017). Type 1 fimbriae com-
posed of a tip fibrillum connected to the rod. Tip fibrillum is
composed of a single copy of FimH (the adhesion) and a sin-
gle copy of FimG (the tip subunit) proteins connected to the
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rod via the FimF protein (the adaptor subunit). The rod is
made up of over 1000 copies of FimA (the major subunit)
proteins (Volkan et al., 2014). It has been shown that the
major structural proteins of fimbriae are effective immuno-
gens (Staniszewska et al., 2000; Witkowska et al., 2005).
Fimbriae (especially type 3) has been shown to mediate
immunity to K. pneumoniae infection in murine models
in vivo and in vitro (Babu et al., 2017; Lavender et al., 2005;
Li et al., 2010). However, vaccine candidates based on fim-
briae and other virulence factors in K. pneumoniae are at
early phases of development and need more studies (Choi
et al., 2019).

Reverse vaccinology and peptide mapping via immunoin-
formatics approaches are widely used strategies for vaccine
development (Rappuoli et al., 2016). Since evaluation of indi-
vidual vaccines under in vivo conditions is an enduring task,
bioinformatics approaches can offer an alternative, attractive,
cost-effective, and much easier way to evaluate antigens and
their more potent parts (epitopes) as vaccine candidates
(Kazi et al., 2018). Moreover, molecular dynamics (MD) simu-
lations that can evaluate the dynamic behavior of molecular
systems (Bai & Yao, 2016] can be applied to find the best
epitopes as vaccine candidates. MD can explore the interac-
tions between epitopes and receptors (as protein–ligand
complexes) as well as conformational changes of the recep-
tors at the atomic level (Bello & Correa-Basurto, 2013; Chen
et al., 2016; Knapp et al., 2015; Mirza et al., 2016; Singaravelu
et al., 2014).

Instead of whole protein antigens, the most potent parts
of them (epitopes) have been suggested as vaccine due to
cost-effective and efficacy. T-cell-specific epitopes are short
length amino acid sequences that can induce desirable, spe-
cific, and broad-spectrum T-cell-dependent immunity (Chyau
Liang, 1998). It has been shown that T-cell-dependent
immunity is important to induce full protection against K.
pneumoniae, although its roles remain to be more clarified
(Choi et al., 2019; Lee et al., 2015).

Immunoinformtics approaches are useful in predicting
immunogenic epitopes as vaccine candidates and are widely
accepted in many scientific fields (Swetha et al., 2016). In the
present study, considering T-cell-dependent immune
responses, T-cell-specific epitopes of four proteins of type 1
fimbriae namely FimA, FimF, FimG and FimH were found and
investigated using accurate immunoinformatics, docking and
molecular dynamics approaches.

2. Methods

2.1. Preparation of protein sequences

Four proteins of type 1 fimbriae, namely FimA, FimF, FimG
and FimH were selected. In spite of FimF, FimG, and FimH
presented as single proteins, FimA is a subunit of identical
proteins that assemble and form the rod part of the fimbriae.
The amino acid sequences of four Fim proteins were
obtained from NCBI protein database (https://www.ncbi.nlm.
nih.gov/protein) with the following accession numbers: FimA
(CDO12578.1), FimF (CDO12574.1), FimG (CDO12573.1), and
FimH (CDO12572.1).

2.2. CD81 T-cell epitope (class I) prediction

CD8þ T-cell epitopes bind to human leukocyte antigen
(HLA)-I alleles. The HLA alleles need to be defined by the epi-
tope prediction tools. Therefore, first, 10 highly frequent
HLA-I alleles in the world population were obtained from the
allele frequency net database (http://www.allelefrequencies.
net (Gonzalez-Galarza et al., 2015)) (Table 1). These alleles
were also present in top 27 frequent alleles presented in
IEDB prediction tool (Fleri et al., 2017).

At the next step, based on the 10 frequent HLA-I alleles, four
Fim protein sequences were screened individually using three
different MHC-I prediction applications, namely IEDB (http://
tools.iedb.org (Fleri et al., 2017)), SYFPEITHI (http://www.syfpei-
thi.de/bin/MHCServer.dll/EpitopePrediction.htm (Schuler et al.,
2007)), and Pro-PredI (http://crdd.osdd.net/raghava/propred1/
(Singh & Raghava, 2003)), according to the previously works
with some modifications (Akya et al., 2019; Dikhit et al., 2016;
Prasasty et al., 2019). The thresholds were set as the tools default
(�1 percentile rank for IEDB and �10 score for SYFPEITHI and
ProPredI). Only 9-mer epitopes were predicted because for
class-I epitopes, the binding groove accommodates short length
(usually 9-mer) amino acids (Gfeller et al., 2018).

All predicted 9-mer epitopes were clustered and aligned
to find epitopes with sequence similarity using Clustal
Omega multiple sequence alignment tool (Li et al., 2015)
and IEDB Epitope Cluster Analysis tool (http://tools.iedb.org/
cluster/). The cutoff was set at �70% similarity. To reduce
the number of predicted epitopes, only one epitope per clus-
ter was selected which was the epitope with the highest
scores achieved by the prediction tools or the epitope that
had been predicted by at least two out of three predic-
tion tools.

Table 1. Alleles used for epitope prediction.

Class-I alleles

Presence in

Class-II alleles

Presence in

SYFPEITHI ProPredI IEDB SYFPEITHI ProPredII IEDB

HLA-A�01:01 þ þ þ HLA-DRB1�03:01 þ þ þ
HLA-A�02:01 þ þ þ HLA-DRB1�07:01 þ þ þ
HLA-A�03:01 þ þ þ HLA-DRB1�15:01 þ þ þ
HLA-A�11:01 þ þ þ HLA-DRB3�01:01 – – –
HLA-A�24:02 þ þ þ HLA-DRB3�02:02 – – –
HLA-A�30:01 – – þ HLA-DRB4�01:01 – – –
HLA-A�68:02 – – þ HLA-DRB5�01:01 – þ þ
HLA-B�08:01 þ þ þ
HLA-B�35:01 þ þ þ
HLA-B�51:01 þ þ þ
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The immunogenicity of each selected epitope was also
evaluated using IEDB Class-I immunogenicity tool (http://
tools.iedb.org/immunogenicity/) that used the position and
the properties of amino acids to predict the epitope
immunogenicity (Calis et al., 2013).

2.3. CD41 T-cell epitope (class II) prediction

CD4þ T-cell epitopes bind to HLA-II alleles. The epitope pre-
diction tools need defining these HLA alleles to predict epit-
opes. In the present study, seven highly frequent HLA-II
alleles in the world population presented by IEDB prediction
tool (Fleri et al., 2017) were used (Table 1).

Based on defined HLA-II alleles, class-II epitopes of four
Fim proteins were predicted by three MHC-II prediction
applications, IEDB, SYFPEITHI, and ProPredII (http://crdd.osdd.
net/raghava/propred/) according to the tools recommenda-
tions and previous works (Panahi et al., 2018; Prasasty et al.,
2019). The thresholds were set on �10 percentile rank for
IEDB and �10 score for SYFPEITHI and ProPredII. Only 15-
mer epitopes were predicted. Note that of seven HLA-II
alleles selected, only three and four alleles existed in
SYFPEITHI and ProPredII tools, respectively (Table 1).

All predicted 15-mer epitopes were clustered and aligned
and the best epitopes were selected as previously mentioned
(see Section 2.2). Finally, the ability of the selected epitopes
in interferon gamma (IFN-c) production was evaluated using
IFNepitope server (http://crdd.osdd.net/raghava/ifnepitope/).

2.4. Human similarity exclusion and searching
experimental records

Using BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=
Proteins) all selected class-I and II epitopes were screened for
homology with human proteome (taxid 9606, the default
human proteome in NCBI) and those with more than 90%
similarity (for both identity and coverage values in BLASTP)
were excluded from the study.

Using the home page of IEDB (https://www.iedb.org/), the
selected epitopes were investigated for experimental records
by applying each epitope as a query and selecting human as
the host. Furthermore, to double check the results, all four
Fim antigens were investigated for experimental records
using PubMed website and the IEDB home page.

2.5. Finding class-II epitopes containing class-I epitopes

Knowing that 9-mer class-I epitopes can be windows of 15-
mer class-II epitopes, all predicted class-I epitopes were
aligned with the predicted class-II epitopes to find these win-
dows. For this purpose, all class-I and II epitopes were clus-
tered using IEDB Epitope Cluster Analysis tool with cutoff set
at �70% similarity. The class-II epitopes that contained at
least one class-I epitope were selected for further studies.
The class-I epitopes which were windows of class-II epitopes
were also kept for further analysis.

2.6. Final selected T-cell epitopes

For each Fim antigen, five best class-II epitopes were
selected based on the following criteria: (1) The epitope con-
tained more class-I epitopes, (2) The epitope with higher pre-
diction scores, (3) The epitope predicted by more prediction
tools, and (4) The epitope predicted positive in IFN-c produc-
tion. Similarly, the five best class-I epitopes of each Fim anti-
gen were selected based on the following criteria: (1) The
epitope was a window of a high score class-II epitope, (2)
The epitope with higher prediction scores, (3) The epitope
predicted by more tools, and (4) The epitope with higher
immunogenicity score.

2.7. Prediction of population coverage

Since HLA molecules are polymorph in the human popula-
tion, the HLA-restricted epitopes as vaccine candidates
should cover a large proportion of the population. To predict
the population coverage of final HLA-epitopes combination,
IEDB population coverage analysis tool (http://tools.iedb.org/
tools/population/iedb_input (Bui et al., 2006), was used.
Although K. pneumoniae infections have been frequently
reported worldwide, to make the issue simple, seven coun-
tries with reported Carbapenemase-producing K. pneumoniae
(Munoz-Price et al., 2013) were selected as template and
entered to the IEDB population coverage analysis tool. Final
epitopes and alleles were also entered to the tool and the
rest of the parameters remained as default.

2.8. Tertiary structures of HLA molecules and T-cell
epitopes

The final selected class-I epitopes were restricted to six HLA-I
alleles. The crystal structure of these alleles was downloaded
from PDB databank with the following PDB IDs: HLA-A�01:01
(ID: 6AT9), HLA-A�02:01 (ID: 5HHP), HLA-A�03:01 (ID: 3RL1),
HLA-A�24:02 (ID: 3I6L), HLA-B�35:01 (ID:2CIK) and HLA-
B�51:01 (ID:1E27).

The final class-II epitopes were all restricted to one HLA-II
allele (HLA-DRB1�15:01). The crystal structure of this allele
was also obtained from PDB databank (PDB ID: 1BX2).

The 3D structures of the final epitopes were modeled by
PEP-FOLD server (Shen et al., 2014; Thevenet et al., 2012)
that predicted five most demonstrable models for each epi-
tope. The PDB format of the model with the lowest energy
was downloaded for further analysis.

The modeled tertiary structure of epitopes was validated
by generation of Ramachandran plot using RAMPAGE server
(http://mordred.bioc.cam.ac.uk/�rapper/rampage.php (Lovell
et al., 2003)). Ramachandran plotting was used to predict the
possibility of epitope amino acids to form a secondary struc-
ture based on dihedral angles. The qualities of modeled ter-
tiary structures were assessed based on the percentage of
the amino acid residues in the favored, allowed and outlier
regions (Lovell et al., 2003).
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2.9. Molecular docking studies

For exactly predicting which active and passive residues
would be incorporate in the docking interactions, consensus
prediction of interface residues in transient complexes
(CPORT) (https://milou.science.uu.nl/services/CPORT/) was
applied (de Vries & Bonvin, 2011). After collecting these resi-
dues for involved structures, HADDOCK 2.2 (http://haddock.
science.uu.nl/services/HADDOCK2.2) was applied to carry out
the docking simulations for the tertiary structures of HLA
alleles and epitopes. The server presented the results as
docking scores along with other parameters (Dominguez
et al., 2003; van Zundert et al., 2016).

2.10. Molecular dynamics simulations (MD)

A class-II epitope of FimG antigen and its residing class-I epi-
tope which were the best epitopes based on our immunoin-
formatics and docking evaluations, were selected for MD
simulation studies. The combination of these class-II and I
epitopes and their restricted HLAs was studied through MD
simulation using CHARMM36 force field of GROMACS, v5.1
(Gheibi et al., 2020). The dimensions of cubic box for MD
simulation were selected so that each atom of the receptor
was at least 10 Angstrom away from walls of the cubic box.
Transferable intermolecular potential with 3 points (TIP3P)
water model was applied to fill the system (Gheibi et al.,
2019). After solvation, Naþ and Cl� ions were inserted to
neutralize the system. Then, the concentration of 150mM
NaCl was added to the systems and energy was optimized
using the steepest descent method. The system was equili-
brated by position restrained simulation in NPT and NVT
ensemble phases when NPT defined as constant substance
amount, pressure and temperature, and NVT defined as con-
stant substance amount, volume and temperature. The
equilibration was done for 1 ns at 310 K and subsequently
submitted for simulation for a total duration of 20 ns. In
order to analyze the results, the atomic coordinates were
recorded every 2 ps (Farasat et al., 2017).

The backbone root mean square deviation (RMSD) and
root mean square fluctuation (RMSF) of the complexes were
analyzed by the tools in GROMACS to understand the MD of
each system. Finally, LigPlot software was used to analyze
the hydrogen and hydrophobic interactions and the hydro-
gen bond lengths (Wallace et al., 1995).

3. Results

3.1. CD81 T-cell epitope (class I) prediction

Based on defined HLA-I alleles (Table 1), epitope prediction
programs predicted a number of different epitopes for each
Fim antigen (Table S1, supplementary material). All selected
epitopes were introduced to the clustering tools and accord-
ingly the epitopes with similar amino acid sequences were
placed in a unique cluster.

The prediction of epitope immunogenicity showed differ-
ent scores for each epitope. Because all predicted epitopes
showed some degrees of immunogenicity, none of them was

removed in this step. However, the immunogenicity scores
were recorded and considered for the selecting of final epit-
opes where higher immunogenicity scores were assumed as
a positive point. The immunogenicity scores of the final
selected epitopes of each Fim antigen have been shown
in Table 2.

3.2. CD41 T-cell epitope (class II) prediction

To predict class-II epitopes, seven most frequent HLA-II
alleles in the world population were obtained and prediction
was performed based on these HLA-II alleles (Table 1). The
clustering and selecting of the best epitopes were similar to
those mentioned about class-I prediction (see section 3.1).
IEDB and SYFPEITHI programs predicted a number of differ-
ent epitopes for each Fim antigen while no epitopes with
scores higher than threshold was found in ProPredII
(Table S2, supplementary material).

IFN-c production prediction showed different states (posi-
tive or negative) for each epitope. Since some epitopes pre-
dicted negative here had high prediction scores, we decided
not to remove any epitope in this step. However, IFN-c pro-
duction states were recorded and considered for selecting
the final epitopes where positivity for IFN-c production was
assumed as a positive point for epitope selection. The IFN-c
production states of the final selected epitopes of each Fim
antigen are shown in Table 2.

3.3. Human similarity exclusion and searching
experimental records

Following human similarity investigation, the number of epit-
opes was further reduced. The number of class-I epitopes
after human similarity exclusion was as follow: 18, 27, 22,
and 42, for FimA, FimF, FimG and FimH, respectively. The
number of class-II epitopes after human similarity exclusion
was as follow: 43, 43, 19, and 46, for FimA, FimF, FimG and
FimH, respectively.

Using the IEDB and Pubmed, the selected epitopes and
the whole antigens of Fim proteins were investigated.
However, no experimental record was found for any of them,
although there are some reports on Fim proteins for other
bacteria from enterobacteriaceae family.

3.4. Finding class-II epitopes containing class-I epitopes

For each Fim protein, all class-I and II epitopes that had
been selected in previous steps, were compared using cluster
analysis tools. We found 11, 9, 13, and 12 clusters for FimA,
FimF, FimG, and FimH, respectively. Each cluster contained at
least one class-II and one class-I epitopes. These clusters
were selected for further analysis.

3.5. Final selected T-cell epitopes

From remained clusters, final T-cell epitopes were selected
based on the selection criteria as previously mentioned
(Section 2.6). For each antigen, the selected epitopes were
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composed of five class-II epitopes each contains one class-I
epitope (Table 2). Note that each selected epitope was
restricted to more than one HLA allele (Table S3, supplemen-
tary material), however to make the issue simple and dock-
ing feasibility only one allele was chosen for each epitope.
These epitopes were evaluated by molecular docking.

3.6. Prediction of population coverage

Seven countries with Carbapenemase-producing K. pneumo-
niae were used for population coverage analysis. For selected
countries, the population coverage was predicted based on

the final epitopes of each antigen and their restricted alleles.
The results showed that the predicted class-I and II epitopes
theoretically cover �35% and �65% (in average) of the pop-
ulations studied, respectively (Table 3).

3.7. Tertiary structure prediction and molecular docking

The 3D structures of HLA alleles were directly downloaded
from PDB data bank and the tertiary structures of the final
epitopes were modeled by PEP-FOLD server. Evaluations of
models by Ramachandran plot showed that high percen-
tages of the amino acid residues of the models were located
in the favored regions that indicates the high quality of the
models (plots are not shown).

Using HADDOCK server, the molecular docking scores of
HLA-I and II in combination with their epitopes for each Fim
antigen were determined (Table 2).

3.8. MD simulation analysis

The selected class-II epitope for MD studies was
AGLLTASASLRAADV from FimG antigen that contains an
internal class-I epitope (underlined). This class-II epitope had
a low docking score (high affinity) of �87.6, recognized by
five HLA-II alleles, had the best prediction score of 26 (by
SYFPEITHI), and was predicted positive in IFN-c production.
Similarly, its internal class-I epitope had a low docking score
(high affinity) of �79.8, recognized by four HLA-I alleles, had
the best prediction score of 19 (by SYFPEITHI), and had
immunogenicity score of 0.07 (Table 4).

To accurately evaluate the stability and binding state of
epitope-HLA (ligand–receptor) complexes, MD simulation was
performed for a total duration of 20 ns. For easy explanations
of MD results, symbols were used for the receptors and the
epitopes (as Table 4).

Table 4. The selected epitopes for MD simulation studies.

Epitope class Selected epitope Epitope symbol Antigen HLA no.a Selected HLAb
HLA

symbol
Best prediction

scorec IFNgd Immunogenicity
Docking
score

Class-II AGLLTASASLRAADV EIIG1 FimG 5 HLA-DRB1�15:01 D15 26 þ N/A �87.6
Internal class-I SASLRAADV EG5 FimG 4 HLA-B�51:01 B51 19 N/A 0.07 �79.8
aNumber of HLA that recognized this epitope.
bThe selected HLA that serves as receptor in MD simulation studies.
cThe best prediction score achieved by the epitope (in SYFPEITHI tool).
dPredicted positive in IFNg production is shown by ‘þ’.
N/A: not available.

Figure 1. RMSD values of the receptors during MD simulation with the GROMACS version 5.1. The RMSD values (nm) of the B51 and D15 receptors alone and in
combination with their ligand (epitopes) are shown by different colors.

Figure 2. RMSF values of the receptors and ligands during MD simulation with
the GROMACS version 5.1. (A) The RMSF values (nm) of the B51 receptor alone
and in combination with its ligand (epitope). (B) The RMSF values (nm) of the
D15 receptor alone and in combination with its ligand (epitope).
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RMSD is an essential parameter which is applied to pre-
dict the system equilibration during the simulation (Kaur
et al., 2019). RMSD profiles were calculated for backbone
amino acid residues of the receptors to accomplish the sys-
tem dynamical stability. As shown in Figure 1, the receptor
D15 and B51 alone and in combination with EIIG1 and EG5
epitopes, reached stability after approximately 11 ns.

RMSF value provides a better understanding of the pro-
tein flexibility and structural fluctuations (Chen et al., 2016;
Mahapatra et al., 2018). To define the flexible regions of the
B51 and D15 in the complexes, the RMSF of their Ca atoms
were evaluated. The RMSF values of the two complexes of
D15–EIIG1 and B51–EG5 are shown in Figure 2. The B51 pro-
tein reached the highest flexibility in 220–230 amino acid
residues (Figure 2(a)) and D15 protein showed the highest
flexibility in 190–199 amino acid residues (Figure 2(b)).

The residues involved in the hydrophobic interactions and
hydrogen bonds were investigated by extracting the PDB file
of MD simulation from GROMACS software and its graphic-
ally evaluation by LigPlot program. The residues involved in
hydrophobic interactions and the hydrogen bonds as well as
the hydrogen bonds lengths in the complexes have been
shown in Figure 3 and Table S4 (supplementary material).

4. Discussion

The control of K. pneumoniae infections is a complicated
issue due to the increasing resistance to various antibiotics
and having virulence factors such as endotoxins inducing
septic shock, capsular polysaccharide inhibiting phagocytosis
and complement-mediated killing (Kim et al., 2002; Merino
et al., 1992; Podschun & Ullmann, 1998). Immunotherapy
treatment and vaccination seem promising alternatives to
control infections caused by K. pneumoniae (Ahmad
et al., 2012).

Here we studied four K. pneumoniae type 1 fimbriae anti-
gens. There is no publically available in vivo, in vitro, or in sil-
ico studies on vaccination against these proteins in the
literature. Therefore, our in silico study would be assumed as
the first study to characterize these proteins and find their
probable T-cell specific epitopes. It is noteworthy that there
are some in silico studies on other K. pneumoniae proteins as
vaccine candidates, such as type 3 fimbriae proteins (Li et al.,
2010), outer membrane proteins (Farhadi et al., 2015), and
whole cell proteins (Dar et al., 2019). These studies found
several vaccine candidates for K. pneumoniae, characterized
them, and predicted their T-cell and B-cell epitopes.

Figure 3. Hydrophobic and hydrogen bond forming residues in the best docked conformations. The receptor amino acids residues involved in H-bond and hydro-
phobic interactions with ligand residues are shown. Half circle in red color indicates the residues involved in hydrophobic interactions. Hydrogen bonds are shown
with green dotted lines. The length of each hydrogen bond is shown as number on each bond.
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Innate and acquired immunity (both humoral and cell-
dependent) are important to control infections of K. pneumo-
niae. In our study the T-cell-specific epitopes as main immu-
nogen parts of the Fim antigens were found using different
prediction tools. For each antigen, a large number of epito-
pes were predicted. These epitopes should be reduced into a
manageable numbers. Therefore, here we applied some anal-
yses to limit the number of epitopes and find the best ones
including the selection of epitopes with higher prediction
scores, prediction by several tools, and non-similarity to
human peptides. After reduction the numbers of epitope,
other parameters were applied to select the most immuno-
genic T-cell-specific epitopes including immunogenicity (for
class-I epitopes), IFN-c production (for class-II epitopes), and
binding affinity to HLA molecules through molecular docking
approaches (for both class-I and II). These analyses led to
introducing five class-II, and five class-I T-cell epitopes for
each antigen which are highly immunogenic, non-similar to
human peptides, and bind with high affinity to their HLAs.
All class-II epitopes selected here contained at least one
immunogenic class-I epitope. If these epitopes use as vac-
cines and process well by proteases, they may result in the
both class-I and II epitopes exposed by MHC class I and II
that consequently induce both CD4þ and CD8þ spe-
cific responses.

Moreover, the final selected T-cell epitopes predicted here
showed to cover a large percentage of the human popula-
tion. The population coverage was estimated by IEDB ana-
lysis tool that calculates the average hit, coverage, and pc90
which are defined as the average number of HLA–epitope
combinations recognized by the population, the projected
population coverage, and the minimum number of
HLA–epitope combinations recognized by 90 percent of the
population, respectively (Bui et al., 2006). In the present
study, the average hit, coverage, and pc90 scores were high
suggesting that our predicted epitopes can be used to vac-
cinate a large number of human populations. Note that the
population coverage predicted for class-I epitopes cover the
higher percentage compared to class-II epitopes that may
refer to the fact that only a few of our HLA-II alleles pre-
sented in the population coverage tool and our HLA-II alleles
are less frequent in the seven countries selected in
our study.

None of our predicted epitopes found in the previous
experimental records which may be due to the limited
experimental studies on K. pneumoniae and more apparently
on Fim antigens. The inadequately experimental records on
K. pneumoniae make a serious limitation for validation of epi-
tope predicted via in silico approaches.

It has been recommended to use multiple prediction
methods to improve the overall prediction performance
(Trost et al., 2007). Here we used three different tools to pre-
dict both class I and II T-cell-specific epitopes namely IEDB,
SYFPEITHI, and ProPred (I or II).

SYFPEITHI employs a log-based score (Rammensee et al.,
1999), ProPredI uses HLA half time dissociation and few
other matrices (Singh & Raghava, 2001; 2003), and IEDB
apply consensus method consisting of stabilized matrix

method (SMM), artificial neural network (ANN), and combina-
torial peptide libraries (Comblib) algorithms (Fleri
et al., 2017).

To choose the most desirable epitopes, the cutoff scores
of SYFPEITHI and ProPred were set on �10 score. The cutoff
score setting is generally depends on the investigator’s deci-
sion (Duarte et al., 2015). Therefore, regarding our previous
work (Akya et al., 2019) we assume the epitopes picked out
at the cutoff scores defined here are energetically best fitted
to HLA binding grooves. For IEDB tools the cutoff scores
were �1 percentile rank for class-I and �20 percentile rank
for class-II epitope prediction. These cutoff scores were
chosen based on IEDB recommendations (Fleri et al., 2017)
which presumably optimized for epitope selection.

The MD simulation study has an important role in the rec-
ognition of interactions between receptors and ligands as
well as receptors conformational modifications at the atomic
level. Results obtained via MD simulation studies provide a
better view of understanding the binding state and dynamics
of the receptor–ligand combination (Bello & Correa-Basurto,
2013; Knapp et al., 2015; Mirza et al., 2016; Singaravelu
et al., 2014).

In our study, MD simulation was performed for the best
class-II epitope and its internal class-I epitope in combination
with their receptors (HLA molecules). The results, which are
presented by RMSD and RMSF values of the complexes, indi-
cated the system stability with the minimum possible devi-
ation. It means that both selected epitopes of the present
study are favorable candidates for stably binding to
HLA molecules.

Altogether, our results suggested that the final T-cell-spe-
cific epitopes can be applied in vaccine development against
K. pneumoniae. However, although in silico approaches might
identify potent epitopes as vaccine candidates with highly
immunogenicity and broad protection, whether these candi-
dates can be successfully produce effective vaccines need to
be tested via in vitro and in vivo studies.
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