CMA Workshop

Shahab Rezaeian
Department of Epidemiology
Kermanshah University of Medical Sciences

Shahab.rezayan@gmail.com

Difference between research article (primary) and meta-analysis

Content		Research article	Meta-analysis
Question			
Proposal			
Article section			
Abstract			
Introduction			
Methods	Sample size	People	Paper
	Sampling method		Search strategy
	Data collection		
	Statistical analysis		
	Inclusion & exclusion		Quality assessment
Results	Descriptive		
	Analytical		
Discussion		Summary, compare, justify	Summary, compare, justify

MA in RCTs

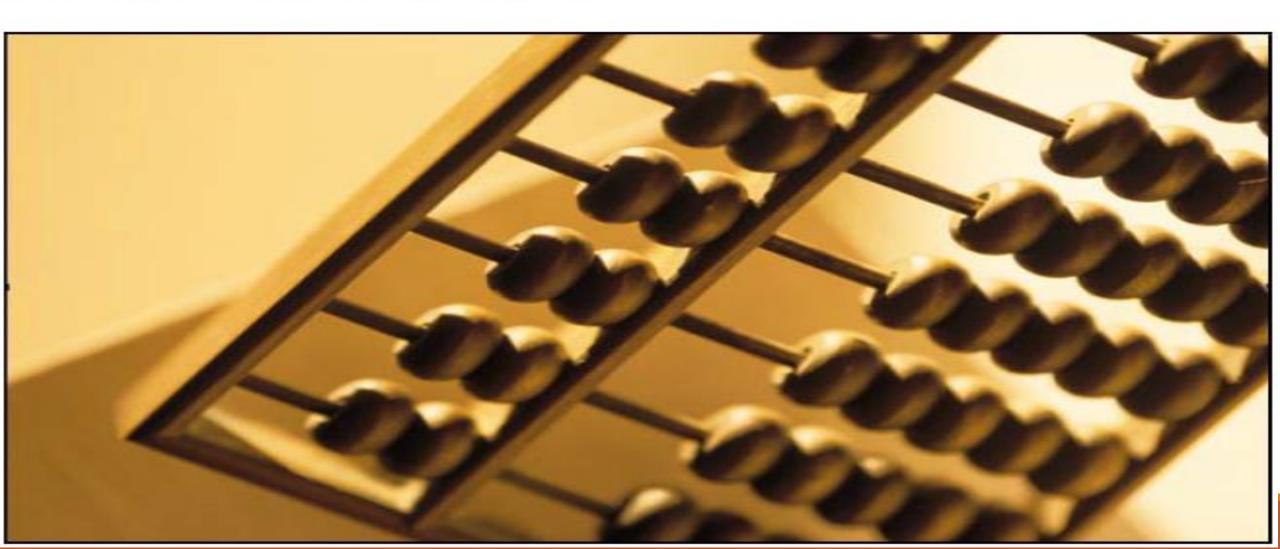
- Participants?
- Interventions?
- Comparisons?
- Outcomes?

MA in Observational studies

The **PICO** may be not applicable

There commonly are several risk factors

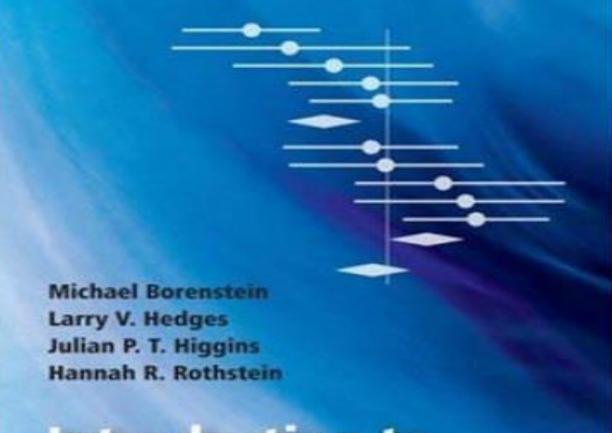
There commonly are several outcomes

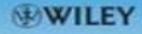

There commonly is several time-points in a study (regional, national)

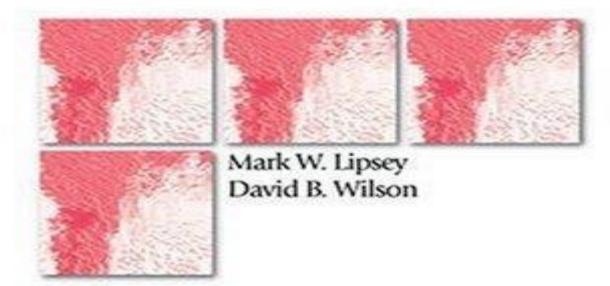
Hence, we have to have specific question:

- Point estimate: Mean, Prevalence, Incidence
- Causality: Odds ratio, Risk ratio
- Risk difference

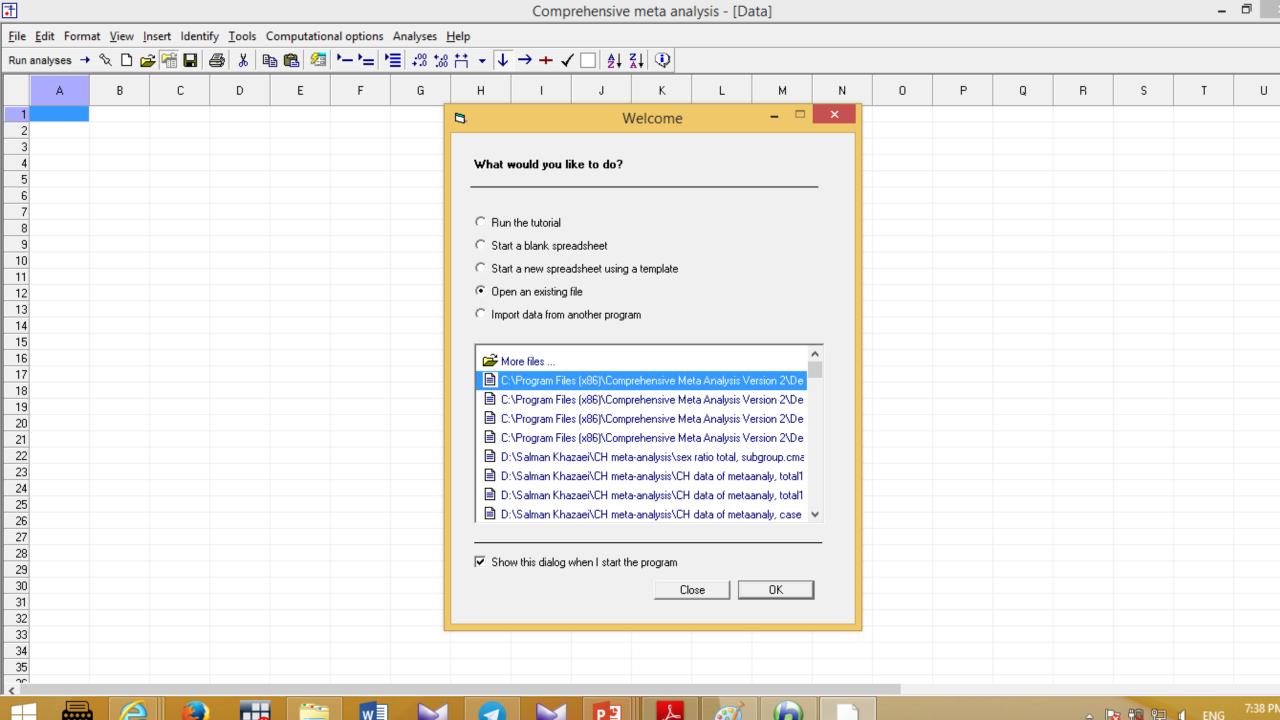
Comprehensive Meta Analysis Version 2.0


This manual will continue to be revised to reflect changes in the program. It will also be expanded to include chapters covering conceptual topics. Upgrades to the program and manual will be available on our download site.


Group meetings to develop the program

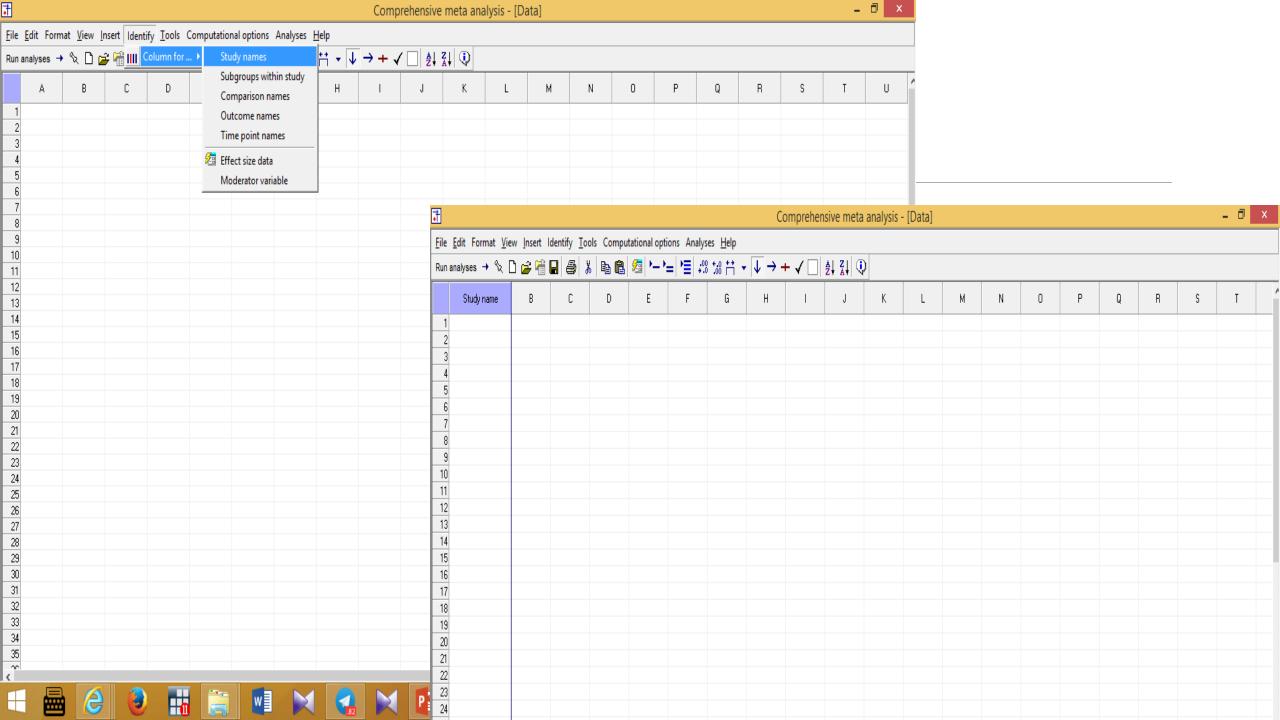

July 2002. Left to right (Seated) Vish Viswesvaran, Will Shadish, Hannah Rothstein, Michael Borenstein, Fred Oswald, Terri Pigott. (Standing) Spyros Konstantopoulos, David Wilson, Alex Sutton, Jonathan Sterne, Harris Cooper, Sue Duval, Jesse Berlin, Larry Hedges, Mike McDaniel, Jack Vevea

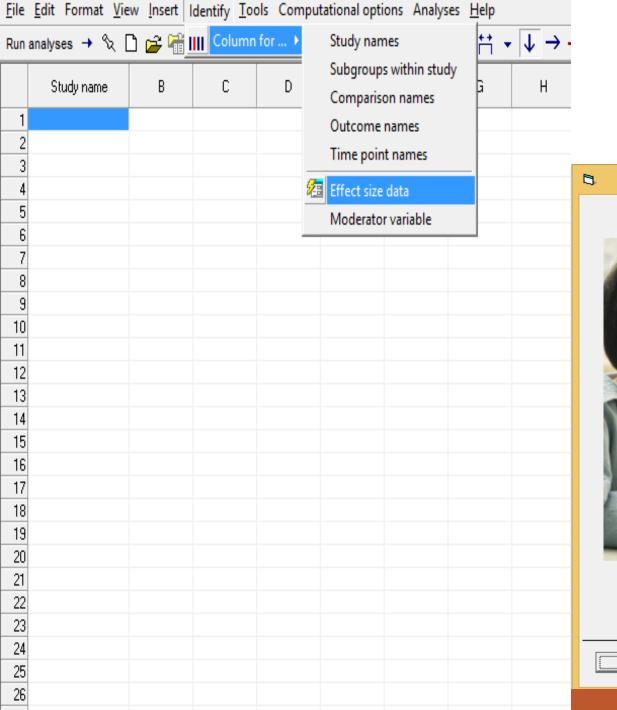
Introduction to Meta-Analysis



PRACTICAL META-ANALYSIS

APPLIED SOCIAL RESEARCH METHODS SERIES


Edited by Leonard Bickman and Debra J. Rog

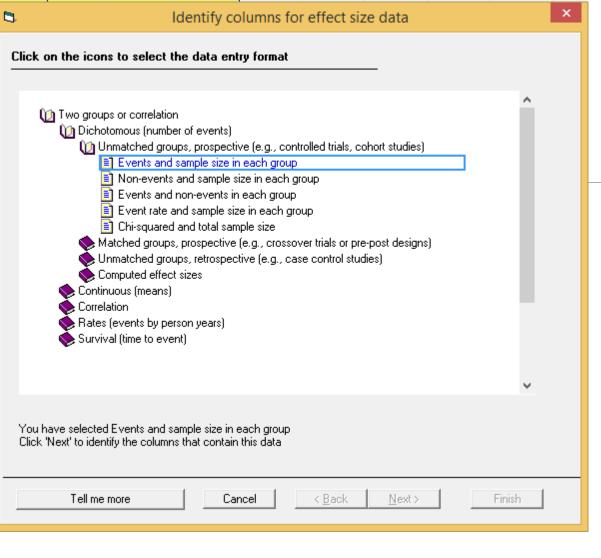


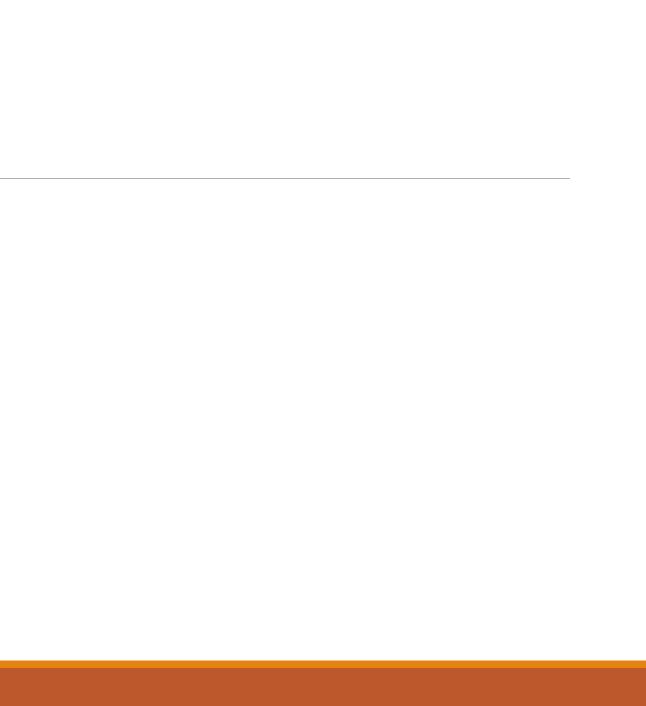
Q1: Protective vaccination against tuberculosis, with special reference to BCG vaccine

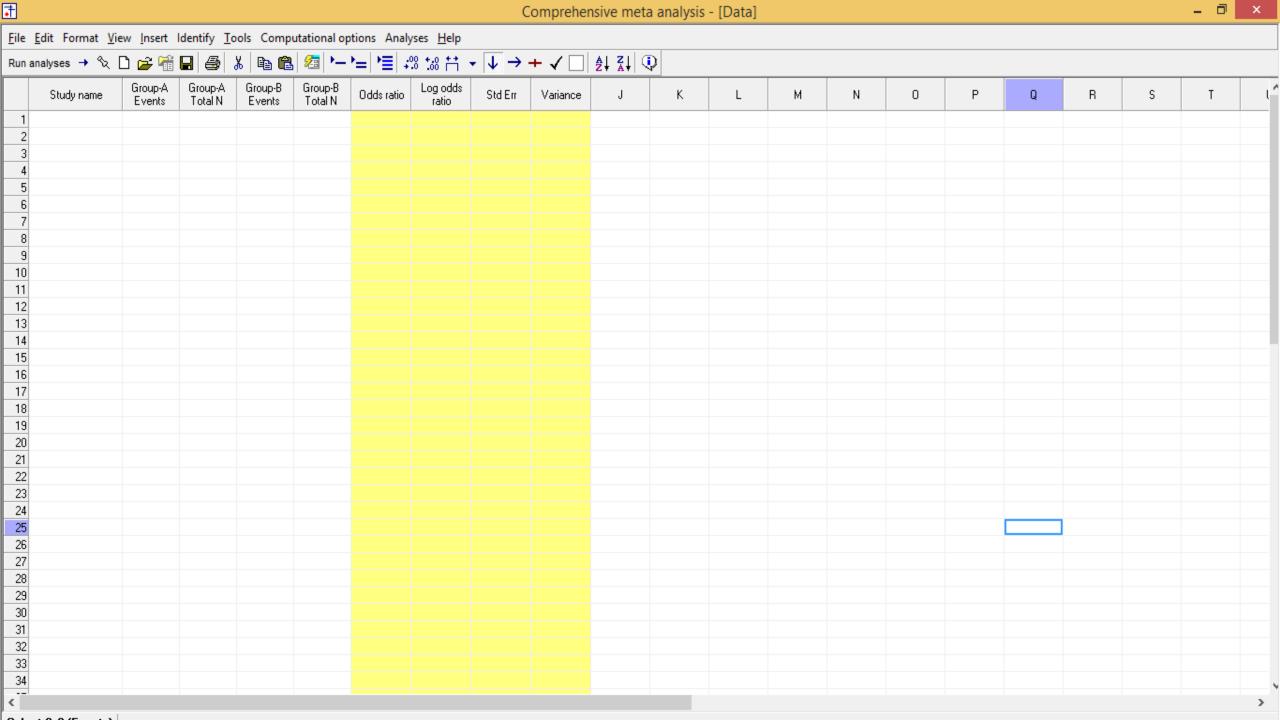
Total retrieved same studies: 13 No. of events in each group

		Case	Control	N
Vaccine	+	4		123
	-	11		139

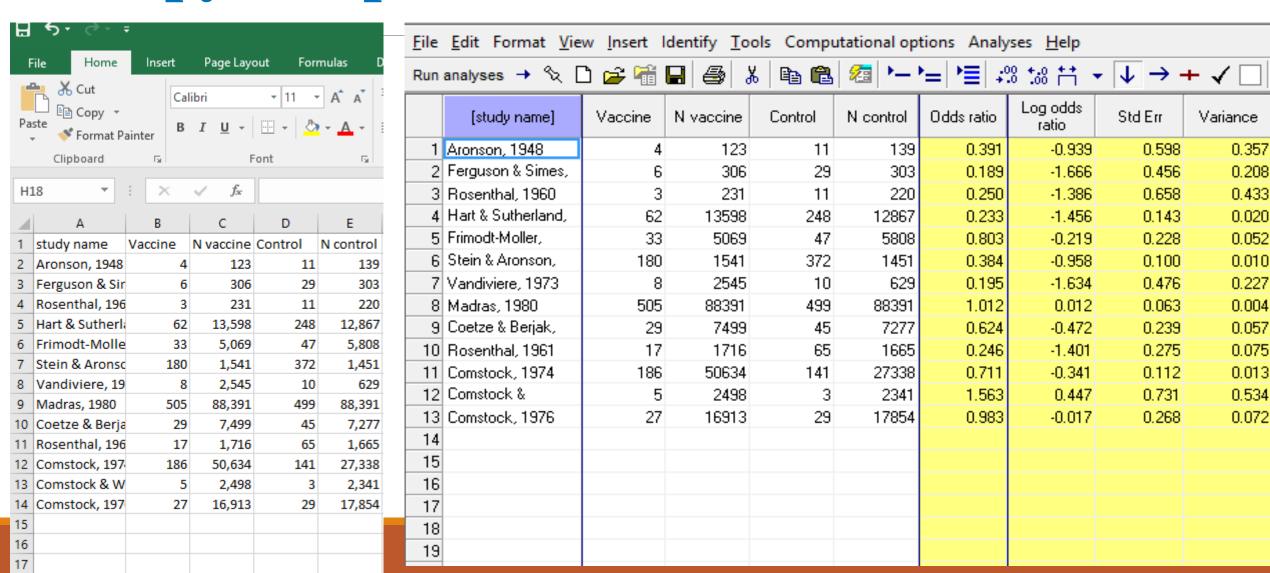
Identify columns for effect size data


Types of studies included

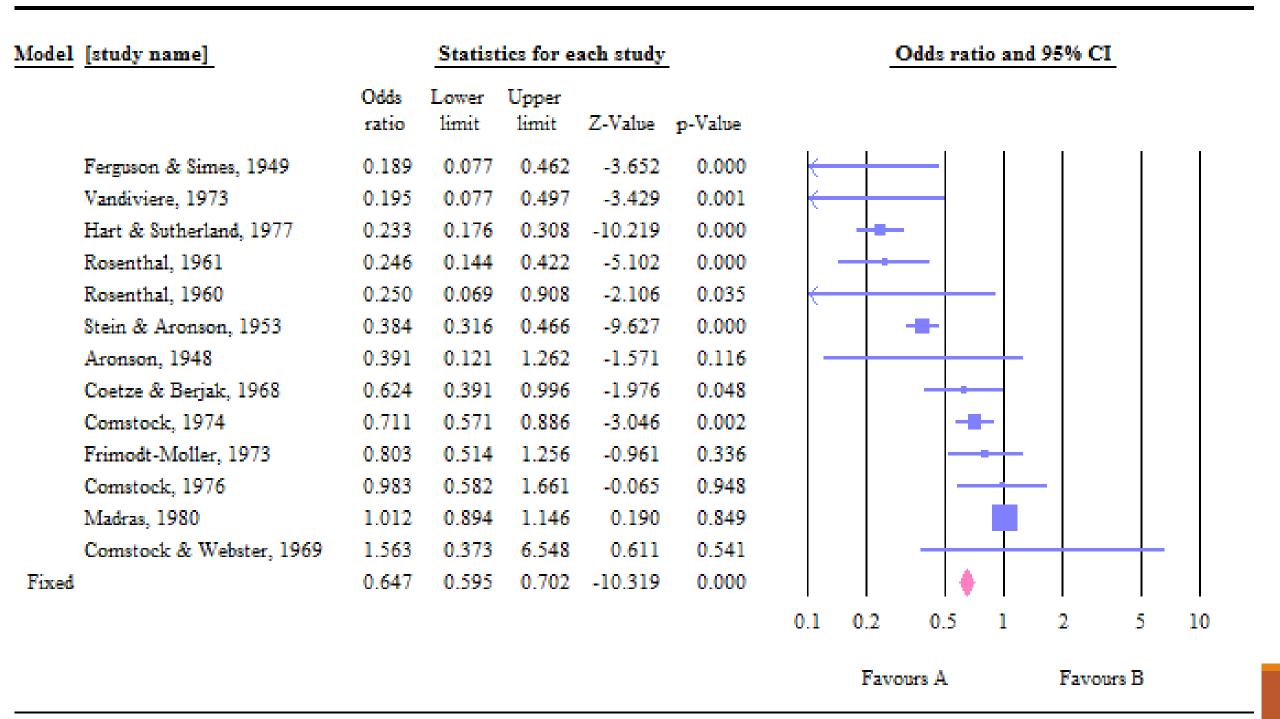

On this panel, select the type of studies to be included in this meta analysis. This controls the types of data entry options to be displayed on the next panel.


If unsure, select the first option, which is appropriate for most analyses. You will be able to return to this panel and change the selection.

- Comparison of two groups, time-points, or exposures (includes correlations)
- C Estimate of means, proportions or rates in one group at one time-point
- C Generic point estimates
- C Generic point estimates, log scale


Tell me more Cancel < Back Next > Finish

Copy and paste from excel to CMA



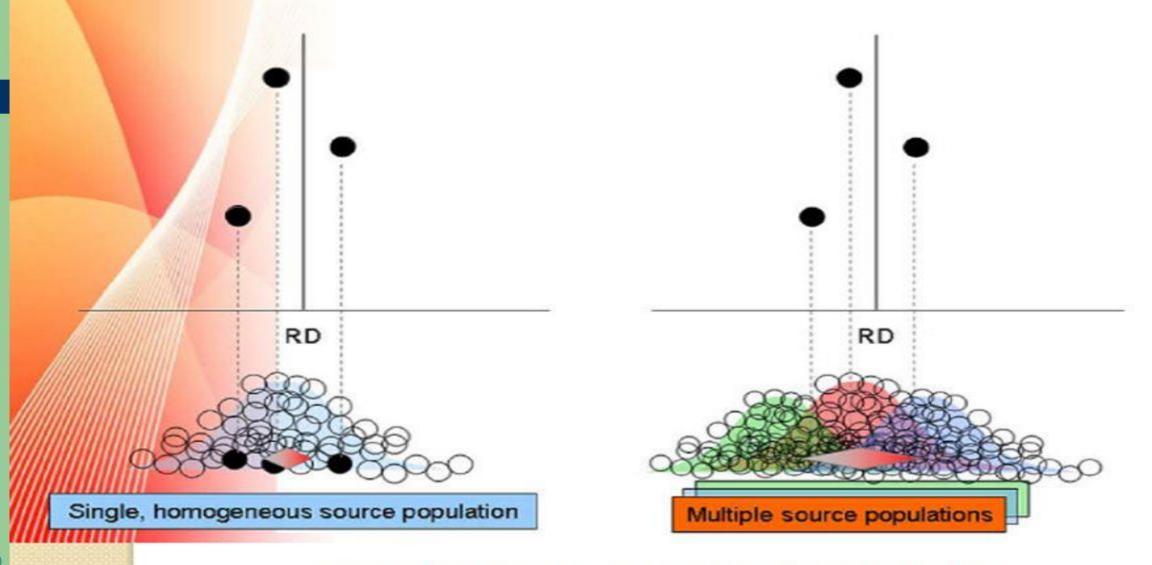
How does Meta-analysis work?

<u>F</u> ile	<u>File Edit Format View Insert Identify Tools Computational options Analyses Help</u>												
Run	analyses → % [) 🚅 📹	🖫 ቆ J	(📭 🛍	/2≣ ▶—	} = } ≣ <i>‡</i> °	0 +.0 ++	r \downarrow \rightarrow -	+ 🗸 🔲				
	[study name]	Vaccine	N vaccine	Control	N control	Odds ratio	Log odds ratio	Std Err	Variance				
1	Ferguson & Simes,	6	306	29	303	0.189	-1.666	0.456	0.208				
2	Vandiviere, 1973	8	2545	10	629	0.195	-1.634	0.476	0.227				
3	Hart & Sutherland,	62	13598	248	12867	0.233	-1.456	0.143	0.020				
4	Rosenthal, 1961	17	1716	65	1665	0.246	-1.401	0.275	0.075				
5	Rosenthal, 1960	3	231	11	220	0.250	-1.386	0.658	0.433				
6	Stein & Aronson,	180	1541	372	1451	0.384	-0.958	0.100	0.010				
7	Aronson, 1948	4	123	11	139	0.391	-0.939	0.598	0.357				
8	Coetze & Berjak,	29	7499	45	7277	0.624	-0.472	0.239	0.057				
9	Comstock, 1974	186	50634	141	27338	0.711	-0.341	0.112	0.013				
10	Frimodt-Moller,	33	5069	47	5808	0.803	-0.219	0.228	0.052				
11	Comstock, 1976	27	16913	29	17854	0.000	-0.017	0.268	0.072				
12	Madras, 1980	505	88391	499	88391	1.012	0.012	0.063	0.004				
13	Comstock &	5	2498	3	2341	1,563	0.447	0.731	0.534				

<u>File Edit Format View Computational options Analyses Help</u>

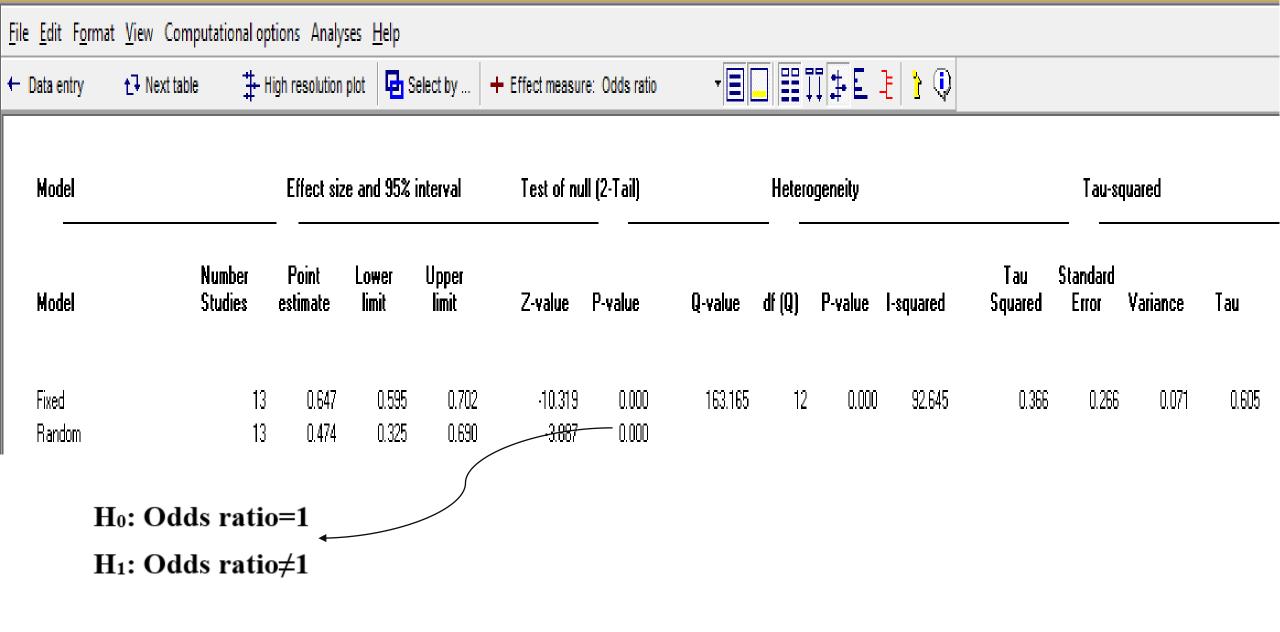
← Data ent	ry t구	Next table	‡- High	resolution plot	Sele	ect by	+ Effect m	neasure: O	dds ratio		+		II 🕸 E	₹ 1 🗘
Model	[study name]		Statis	stics for each st	udy				Odds r	atio and	95% CI			
		Odds ratio	Lower limit	Upper limit	Z-Value	p-Value	0.10	0.20	0.50	1.00	2.00	5.00	10.00	
	Ferguson &	0.189	0.077	0.462	-3.652	0.000) <u> </u>	+						
	Vandiviere,	0.195	0.077	0.497	-3.429	0.001		_						
	Hart &	0.233	0.176	0.308	-10.219	0.000)	+-						
	Rosenthal,	0.246	0.144	0.422	-5.102	0.000)	+	_					
	Rosenthal,	0.250	0.069	0.908	-2.106	0.035	; <u> </u>			—				
	Stein &	0.384	0.316	0.466	-9.627	0.000)	-						
	Aronson,	0.391	0.121	1.262	-1.571	0.116	; -		+	+				
	Coetze &	0.624	0.391	0.996	-1.976	0.048	}		++					
	Comstock,	0.711	0.571	0.886	-3.046	0.002	2		-					
	Frimodt-Moll	0.803	0.514	1.256	-0.961	0.336	;			-				
	Comstock,	0.983	0.582	1.661	-0.065	0.948	}		-	-	-			
	Madras,	1.012	0.894	1.146	0.190	0.849)			+				
	Comstock &	1.563	0.373	6.548	0.611	0.541			+		++-			
Fixed		0.647	0,595	0.702	-10.319	0.000)		+					
Random		0.474	0.325	0.690	-3.887	0.000)	-						

Fixed vs. Random effect


FE. Assumes a common underlying effect behind every trial One source of variation:

within studies (between patients)

RE. Assume true effect estimates really vary across studies Two sources of variation:


- within studies (between patients)
- between studies (heterogeneity)

Fixed and random effects models

Selection of the Model

- •The selection of a model must be based solely on the question of which model fits the distribution of effect sizes, and takes account of the relevant source(s) of error.
- •When studies are gathered from the published literature, the random effects model is generally a more plausible match
- The strategy of starting with a fixed-effect model and then moving to a random-effects model if the test for heterogeneity is significant is a mistake, and should be strongly discouraged

Assessing statistical heterogeneity

If there is substantial heterogeneity among studies in a systematic review, it might be inappropriate to do a meta-analysis

How do we know if there is 'substantial' heterogeneity?

- 1. Visual inspection of a forest plot of studies included in the review;
- 2. Assessment of results of tests for statistical heterogeneity.

Statistical tests for heterogeneity

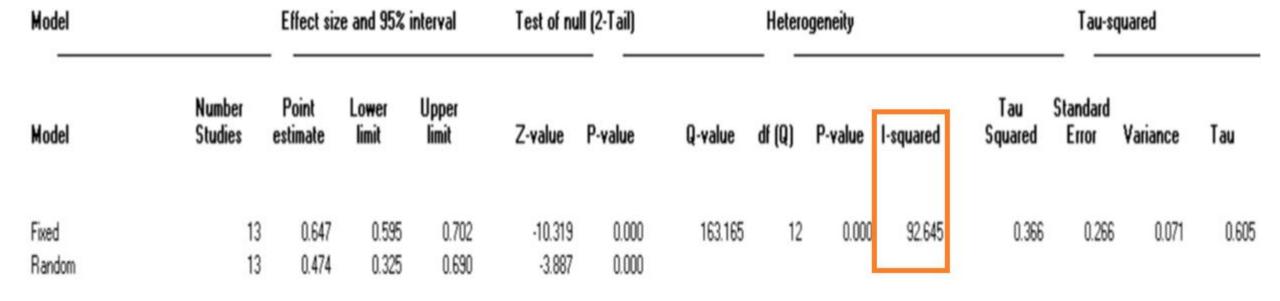
Cochran Q (Chi-square, X²)

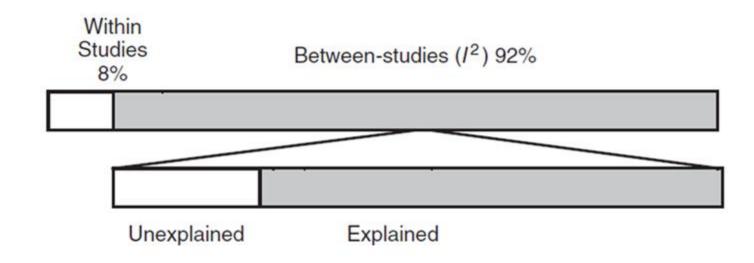
 I^2

Tau²

$$Q = \sum_{i=1}^{k} W_i (Y_i - M)^2$$

Cochran Q (Chi-square, X^2)


Under null, it is approximately distributed as a chi-square with k-1 degrees of freedom


Not powerful when number of studies is small or within study variance is large

It can not be used to estimate the magnitude of true variance

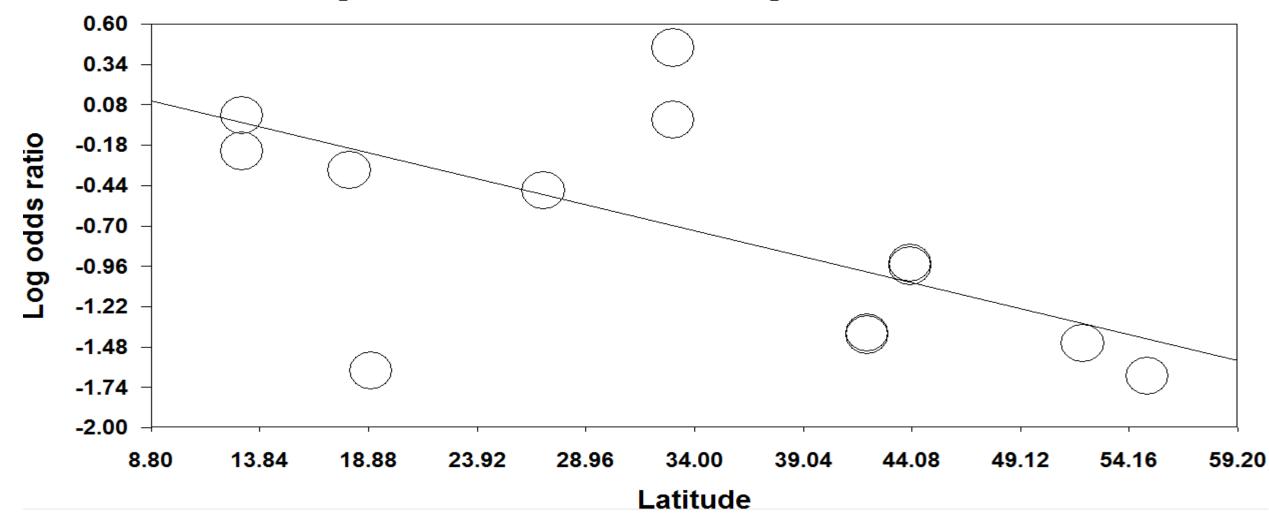
Quantifying heterogeneity, $I^2 = \left(\frac{Q - df}{Q}\right) \times 100\%$, df is the excess variation. The next 41

- •Q-df is the excess variation. The part that will be attributed to differences in the true effects from study to study
- The ratio of true heterogeneity to total observed variation
- Describes the percentage of total variation across studies that is due to heterogeneity rather than chance
- Not directly affect by the number of studies
- A value of 0% indicates no observed heterogeneity
- **Low, moderate, large and very large for 0-25%, 25-50%, 50-75% and >75%**

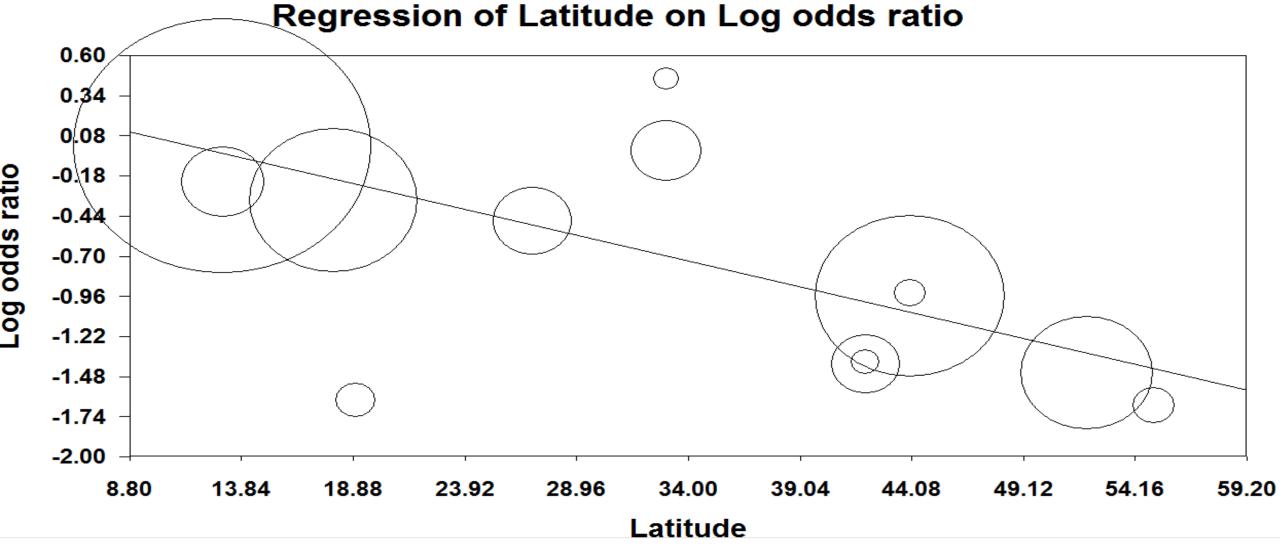
Tau (τ^2)

The variance of the true effect sizes, where τ^2 refers to the actual variance and T^2 is our estimate of this parameter

Factors affecting measures of dispersion.


	Range of possible values	Depends on number of studies	Depends on scale
Q	$0 \leq Q$	✓	
p	$0 \le p \le 1$	✓	
T^2	$0 \leq p \leq 1$ $0 \leq T^2$		✓
T	$0 \leq T$		✓
/ ²	$0\% \le I^2 < 100\%$		

Q5. Meta regression BCG vaccine and prevent of tuberculosis


This module allows you to run a regression analysis to estimate the impact of continuous study moderators on overall heterogeneity

In this example, there is a numeric variable as latitude

Regression of Latitude on Log odds ratio

• In the default presentation, all studies are represented by circles of identical size, regardless of their individual weighting in the analysis

Proportional option identifies which studies have the greatest impact on the slope of the regression line.

Fixed effect regression

Model

Total

Residual

	Point estimate	Standard error	Lower limit	Upper limit	Z-value	p-Value
Slope Intercept	-0.03310 0.39490	0.00282 0.08239	-0.03862 0.23342	-0.02758 0.55639	-11.75030 4.79296	0.00000 0.00000
Tau-squared	0.04799					

p-value

0.00000

0.00883

0.00000

Q

138,06950

25.09542

163,16492

ďf

1.00000

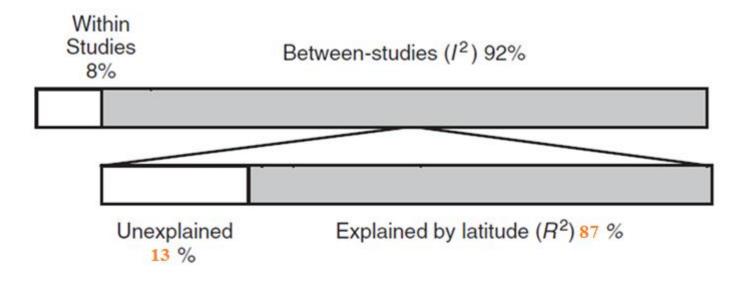
11.00000

12.00000

The regression coefficient for latitude is -0.0331, which means that every one degree of latitude corresponds to a decrease of 0.0331 units in effect size

The null hypothesis for Z:

H0: Coefficient=0


Q_{model} is the dispersion explained by the covariates.

Q_{res} means that even with latitude in the model, some of the between-studies variance remains unexplained.

The proportion of variance explained

$$R^{2} = 1 - \frac{0.04799}{0.366} = 0.87$$

$$R^{2} = 1 - \left(\frac{\sigma_{unexplained}^{2}}{\sigma_{total}^{2}}\right)$$

Proportion of variance explained by latitude.

One-study removed

It will also run a one-study removed analysis to show the impact of each study on the combined effect

<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> ie	w Computa	tional option	ns Analyses	<u>H</u> elp										
← Data entr	'ry <u>t</u> ∓	Next table	# High	resolution plot	t 🔁 Sele	ect by 🕇	+ Effec	t measu	re: C	Odds ratio		- 🔳		#	<u>;</u>
Model	Study name	S	oummary statist	tudy removec	t			Odds	ratio (95%	CI) with	CI) with study removed				
		Point	Lower limit	Upper limit	Z-Value	p-Value	0.10	0 0.2	20	0.50	1.00	2.00	5.00	10.0	DO
	Aronson,	0.478	0.324	0.706	-3.720	0.000			1	-					
N .	Ferguson &	0.505	0.343	0.742	-3.480	0.001		1	ı		-				İ
N .	Rosenthal,	0.488	0.332	0.718	-3.639	0.000	,	1	ı						İ
N .	Hart &	0.517	0.364	0.736	-3.670	0.000	,	1	ı	 					i
N .	Frimodt-Moll	0.449	0.300	0.673	-3.878	0.000	,	1	_						i
1	Stein &	0.483	0.321	0.727	-3.489	0.000	,	1	ı	 					l
1	Vandiviere,	0.503	0.342	0.739	-3.499	0.000	,	1	ı						l
1	Madras,	0.438	0.311	0.617	-4.717	0.000	,	1	-						l
1	Coetze &	0.461	0.307	0.690	-3.759	0.000	,	1	-						l
1	Rosenthal,	0.503	0.342	0.741	-3.473	0.001		1	ı						l
V	Comstock,	0.451	0.291	0.700	-3.555	0.000	•	1	' –						l
	Comstock &	0.450	0.306	0.661	-4.063	0.000	,	1	-						l
	Comstock,	0.442	0.297	0.659	-4.005	0.000	,	1	_						l
Random		0.474	0.325	0.690	-3.887	0.000									

Proc Biol Sci. 2004 Sep 22;271(1551):1961-6.

Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology.

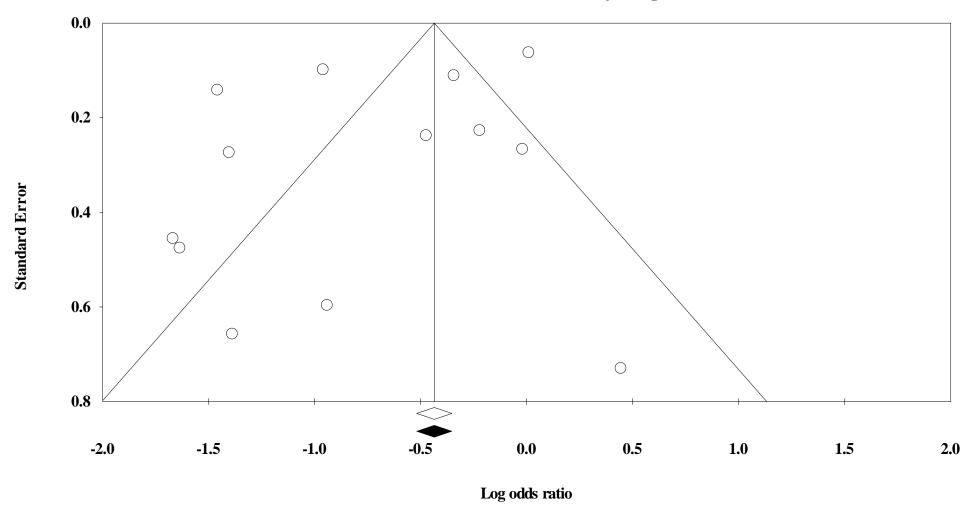
Leimu R1, Koricheva J.

Author information

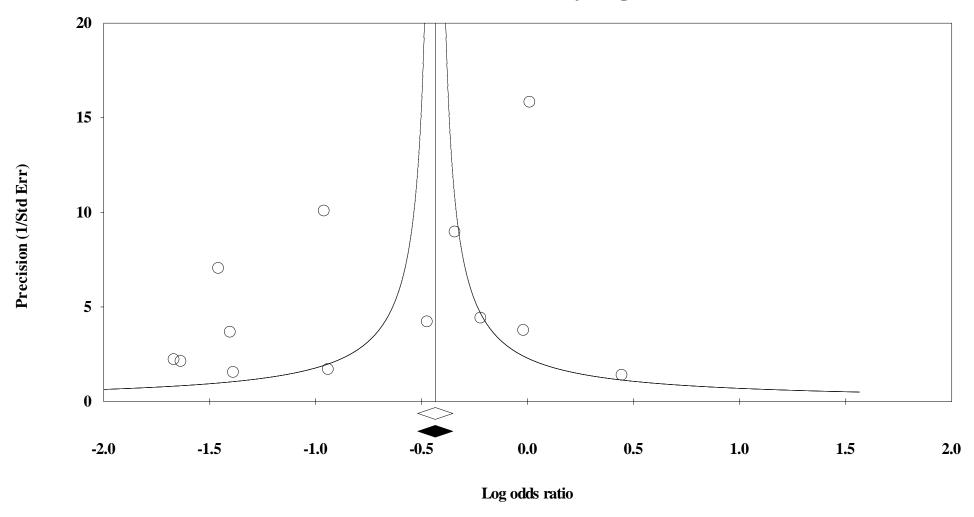
Abstract

Temporal changes in the magnitude of research findings have recently been recognized as a general phenomenon in ecology, and have been attributed to the delayed publication of non-significant results and disconfirming evidence. Here we introduce a method of cumulative meta-analysis which allows detection of both temporal trends and publication bias in the ecological literature. To illustrate the application of the method, we used two datasets from recently conducted meta-analyses of studies testing two plant defence theories. Our results revealed three phases in the evolution of the treatment effects. Early studies strongly supported the hypothesis tested, but the magnitude of the effect decreased considerably in later studies. In the latest studies, a trend towards an increase in effect size was observed. In one of the datasets, a cumulative meta-analysis revealed publication bias against studies reporting disconfirming evidence; such studies were published in journals with a lower impact factor compared to studies with results supporting the hypothesis tested. Correlation analysis revealed neither temporal trends nor evidence of publication bias in the datasets analysed. We thus suggest that cumulative meta-analysis should be used as a visual aid to detect temporal trends and publication bias in research findings in ecology in addition to the correlative approach.

PMID: 15347521 PMCID: PMC1691819 DOI: 10.1098/rspb.2004.2828


[Indexed for MEDLINE] Free PMC Article

How to check publication bias?


Graphical

Statistical test

Publication bias: Classic fail-safe N

Classic fail-safe N

Z-value for observed studies	-11.35821
P-value for observed studies	0.00000
Alpha	0.05000
Tails	2.00000
Z for alpha	1.95996
Number of observed studies	13.00000
Number of missing studies that would bring p-value to > alpha	424.00000

One concern of publication bias is that some non-significant studies are missing from our analysis and that these studies, if included, would nullify the observed effect

The fail-safe N is 424. This means that we would need to locate and include 424 'null' studies in order for the combined 2-tailed p-value to exceed 0.050

Edit

Orwin's fail-safe N

Odds ratio in observed studies	0.64653
Criterion for a 'trivial' odds ratio	0.70000
Mean odds ratio in missing studies	1.00000
Number missing studies needed to bring odds ratio over 0.7	3.00000

Publication bias: Begg and Mazumdar Rank Correlation Test

Kendall's S statistic (P-Q)

2.00000

Kendall's tau without continuity correction

Tau	0.02564
z-value for tau	0.12202
P-value (1-tailed)	0.45144
P-value (2-tailed)	0.90288

The correlation (Kendall's tau) between the treatment effect and the standard error

A significant correlation suggests that bias exists

Conversely, a non-significant correlation may be due to low statistical power, and cannot be taken as evidence that bias is absent.

Kendall's tau with continuity correction

Tau	0.01282
z-value for tau	0.06101
P-value (1-tailed)	0.47568
P-value (2-tailed)	0.95135

Publication Bias: Egger's Test of the Intercept

Egger's regression intercept

-2.34534
1,55635
-5.77084
1.08016
1,50695
11.00000
0.08000
0.15999

Egger suggests that we assess this same bias by using precision (the inverse of the standard error) to predict the standardized effect (effect size divided by the standard error).

In this equation, the size of the treatment effect is captured by the slope of the regression line (B1) while bias is captured by the intercept (B0).

Publication bias: Duval and Tweedie's Trim and Fill

If the meta analysis had captured all the relevant studies we would expect the funnel plot to be symmetric

Duval and Tweedie developed a method that allows us to impute missed studies. That is, we determine where the missing studies are likely to fall, add them to the analysis, and then recompute the combined effect

In our example, using Trim and Fill these values are unchanged

Publication bias: Duval and Tweedie's Trim and Fill

Duval and Tweedie's trim and fill

		Fi	xed Effects		Rar	Q Value		
	Studies Trimmed	Point Estimate	Lower Limit	Upper Limit	Point Estimate	Lower Limit	Upper Limit	
Observed values Adjusted values	(0.64653 0 0.64653	0.59513 0.59513	0.70237 0.70237	0.47360 0.47360	0.32490 0.32490	0.69035 0.69035	163.16492 163.16492

Look for missing studies where?

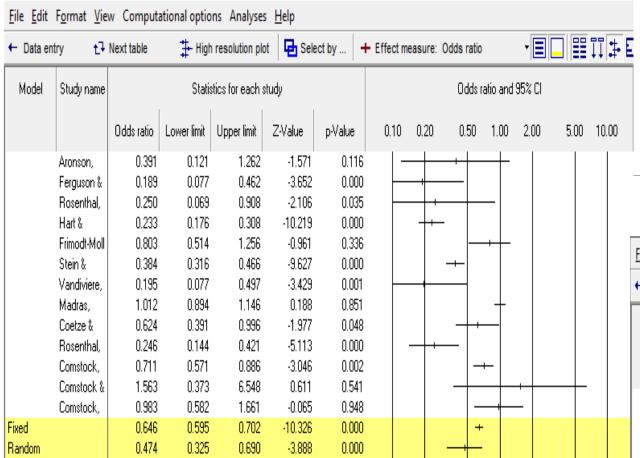
- Not specified
- To left of mean.
- To right of mean.

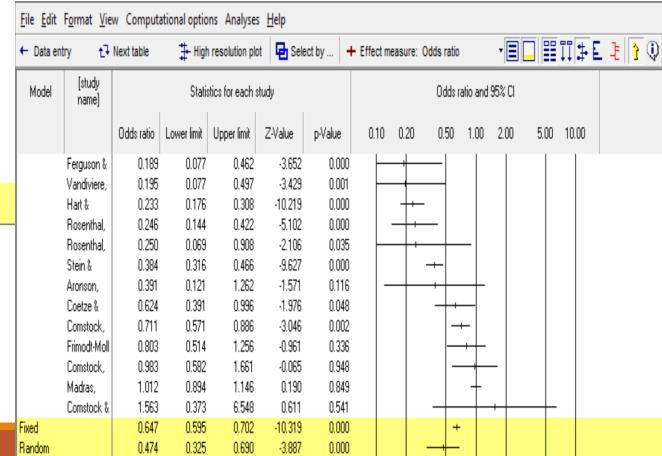
Look for missing studies using which model?

- Not specified
- Fixed effect model.
- Random effects model

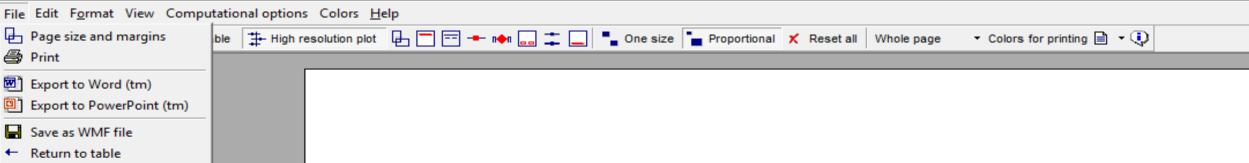
Q2: Protective vaccination against tuberculosis, with special reference to BCG vaccine Total retrieved same studies: 13

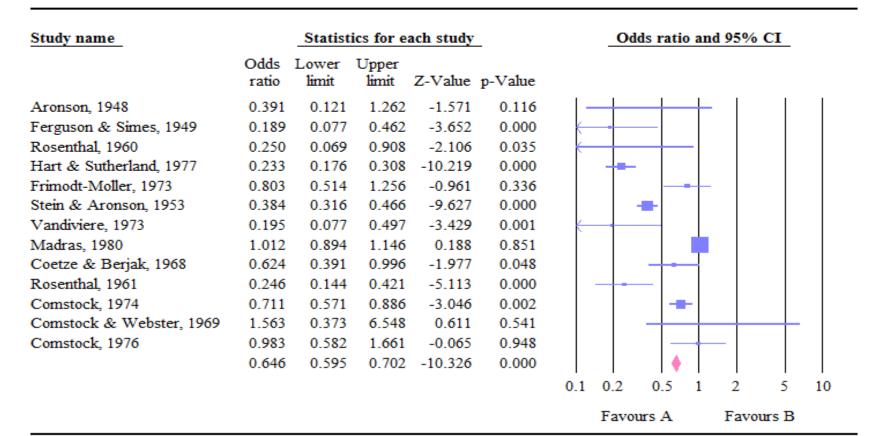
Seven studies reported No. of events in each group

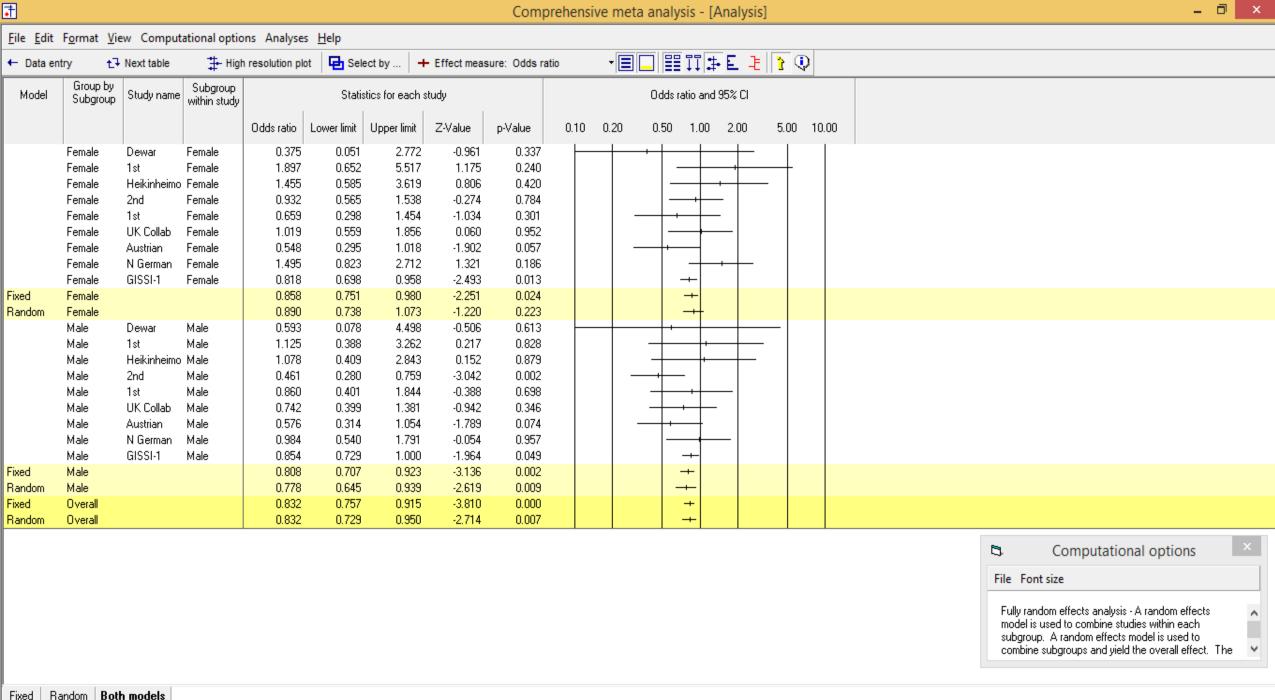

Three studies reported Odds ratio and 95% CI


Three studies reported log OR and SE

How to combine these findings?


Import the data from excel (sheet Q2) to CMA


Study name	Data format	Group-A Events	Group-A Total N	Group-B Events	Group-B Total N	Odds ratio	Lower Limit	Upper Limit	Confidence level	Odds ratio (log)	Std error (log)	Odds ratio	Log odds ratio	Std Err	Variance
1 Aronson, 1948	Cohort 2x2 (Events)	4	123	11	139							0.391	-0.939	0.598	0.357
2 Ferguson & Simes,	Cohort 2x2 (Events)	6	306	29	303							0.189	-1.666	0.456	0.208
3 Rosenthal, 1960	Cohort 2x2 (Events)	3	231	11	220							0.250	-1.386	0.658	0.433
4 Hart & Sutherland,	Cohort 2x2 (Events)	62	13598	248	12867							0.233	-1.456	0.143	0.020
5 Frimodt-Moller,	Cohort 2x2 (Events)	33	5069	47	5808							0.803	-0.219	0.228	0.052
6 Stein & Aronson,	Cohort 2x2 (Events)	180	1541	372	1451							0.384	-0.958	0.100	0.010
7 Vandiviere, 1973	Cohort 2x2 (Events)	8	2545	10	629							0.195	-1.634	0.476	0.227
8 Madras, 1980	Odds ratio					1.012	0.894	1.146	0.950			1.012	0.012	0.063	0.004
9 Coetze & Berjak,	Odds ratio					0.624	0.391	0.996	0.950			0.624	-0.472	0.239	0.057
10 Rosenthal, 1961	Odds ratio					0.246	0.144	0.422	0.950			0.246	-1.402	0.274	0.075
11 Comstock, 1974	Log OR, SE									-0.341	0.112	0.711	-0.341	0.112	0.013
12 Comstock &	Log OR, SE									0.447	0.731	1.563	0.447	0.731	0.534
13 Comstock, 1976	Log OR, SE									-0.017	0.268	0.983	-0.017	0.268	0.072


Saving and Exporting

Q3. Subgroups within study Streptokinase therapy and myocardial infarction

<u>F</u> ile	<u>F</u> ile <u>E</u> dit Format <u>V</u> iew <u>I</u> nsert Identify <u>T</u> ools Computational options Analyses <u>H</u> elp										
Run	Run analyses → % 🗅 😅 🔐 🖫 🚳 🐰 🗈 🛍 🕰 🏲 - 🏲 = 📭 😅 🔆 ∺ + 🕡 → + 🗸 🔲 🔳 = 😫 🛣										
	Study name	Subgroup within study	Treated Events	Treated Total N	Control Events	Control Total N	Odds ratio	Log odds ratio	Std Err	J	
1	Fletcher	Both	1	12	4	11	0.159	-1.838	1.218		
2	Dewar	Female	2	10	4	10	0.375	-0.981	1.021		
3	Dewar	Male	2	11	3	11	0.593	-0.523	1.034		
4	1st European	Female	11	40	7	42	1.897	0.640	0.545		
5	rst European	Male	9	43	8	42	1.125	0.118	0.543		
6	Heikinheimo	Female	12	100	9	105	1.455	0.375	0.465		
7	Heikirieiiio	Male	10	119	8	102	1.078	0.075	0.495		
8	Italian	Both	19	164	18	157	1.012	0.012	0.350		
9	2nd European	Female	37	150	46	177	0.932	-0.070	0.255		
10	zna European	Male	32	223	48	180	0.461	-0.775	0.255		
11	2nd Frankfurt	Both	13	102	29	104	0.378	-0.973	0.369		
12	1st Australian	Female	12	135	16	124	0.659	-0.418	0.404		
13	i st Australian	Male	14	129	16	129	0.860	-0.151	0.389		
14	NHLBI SMIT	Both	7	53	3	54	2.587	0.950	0.719		
15	Valere	Both	11	49	9	42	1.061	0.060	0.509		
16	Frank	Both	6	55	6	53	0.959	-0.042	0.612		
17	UK Collab	Female	27	150	25	141	1.019	0.018	0.306		
18	ON COLLAB	Male	21	152	27	152	0.742	-0.298	0.317		
19	Klein	Both	4	14	1	9	3.200	1.163	1.214		
20	Acceleian	Female	18	170	32	180	0.548	-0.602	0.316		
21	Austrian	Male	19	182	33	196	0.576	-0.552	0.309		
22	Lasierra	Both	1	13	3	11	0.222	-1.504	1.242		
23	N Gorman	Female	34	125	24	120	1.495	0.402	0.304		
24	N German	Male	29	124	27	114	0.984	-0.017	0.306		
25	Witchitz	Both	5	32	5	26	0.778	-0.251	0.696		
26	2nd Australian	Both	25	112	31	118	0.806	-0.215	0.309		
27	3rd European	Both	25	156	50	159	0.416	-0.877	0.277		
	ISAM	Both	54	859	63	882	0.872	-0.137	0.192		
29		Female	321	2939	381	2922	0.818	-0.201	0.081		
30	GISSI-1	Male	327	2921	377	2930	0.854	-0.158	0.081		

Basic stats | Calculations

Q4. Multiple outcomes within studies Streptokinase therapy and its outcomes

	Study name	Outcome	Treated Events	Treated Total N	Control Events	Control Total N	Odds ratio	Log odds ratio	Std Err
1	Fletcher	Death	1	12	4	11	0.159	-1.838	1.218
2	Fletcher	Myocardial	2	12	4	12	0.400	-0.916	0.987
3	1st Myocardial	Myocardial	51	277	87	327	0.623	-0.474	0.199
4	Dewar	Death	4	21	7	21	0.471	-0.754	0.723
5	Dewar	Myocardial	4	24	8	22	0.350	-1.050	0.705
6	1st European	Death	20	83	15	84	1.460	0.379	0.383
7	1st European	Myocardial	18	88	14	87	1.341	0.293	0.394
8	Heikinheimo	Death	22	219	17	207	1.248	0.222	0.339
9	Heikinheimo	Myocardial	23	244	16	200	1.197	0.180	0.340
10	Italian	Death	19	164	18	157	1.012	0.012	0.350
11	Italian	Myocardial	21	177	14	147	1.279	0.246	0.365
12	2nd European	Death	69	373	94	357	0.635	-0.454	0.180
13	2nd Frankfurt	Death	13	102	29	104	0.378	-0.973	0.369
14	1st Australian	Death	26	264	32	253	0.754	-0.282	0.280
15	1st Australian	Myocardial	29	277	29	248	0.883	-0.124	0.279
16	NHLBI SMIT	Death	7	53	3	54	2.587	0.950	0.719
17	Valere	Death	11	49	9	42	1.061	0.060	0.509
18	Frank	Death	6	55	6	53	0.959	-0.042	0.612
19	UK Collab	Death	48	302	52	293	0.876	-0.133	0.219
20	UK Collab	Myocardial	44	280	51	297	0.899	-0.106	0.225
21	Klein	Death	4	14	1	9	3.200	1.163	1.214
22	Klein	Myocardial	5	15	1	8	3.500	1.253	1.201
23	Austrian	Death	37	352	65	376	0.562	-0.576	0.221
24	Austrian	Myocardial	41	341	62	388	0.719	-0.330	0.217
25	Lasierra	Death	1	13	3	11	0.222	-1.504	1.242
26	N German	Death	63	249	51	234	1.215	0.195	0.215
27	Witchitz	Death	5	32	5	26	0.778	-0.251	0.696
28	Witchitz	Myocardial	4	28	5	24	0.633	-0.457	0.738
29	2nd Australian	Death	25	112	31	118	0.806	-0.215	0.309

Thank you for your attention

