
Research Article

Eur Neurol

A Novel Method for Sleep-Stage 
Classification Based on Sonification of Sleep 
Electroencephalogram Signals Using Wavelet 
Transform and Recurrent Neural Network

Foad Moradi 

a, b, c    Hiwa Mohammadi 

a, c, d    Mohammad Rezaei 

a, e    

Payam Sariaslani 

c, d    Nazanin Razazian 

c, d    Habibolah Khazaie 

a    Hojjat Adeli 

f

aSleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; bElectrical and 
Computer Engineering Faculty, Semnan University, Semnan, Iran; cDepartment of Neurology, School of Medicine, 
Kermanshah University of Medical Sciences, Kermanshah, Iran; dClinical Research Development Center, Imam 
Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran; eDepartment of Medical Physics and 
Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; fDepartment of 
Biomedical Informatics and Department of Neuroscience, The Ohio State University, Columbus, OH, USA

Received: July 5, 2020
Accepted: September 2, 2020
Published online: October 29, 2020

Hiwa Mohammadi
Department of Neurology, 
Imam Reza Hospital, Parastar Blvd
Kermanshah 6714637857 (Iran) 
hiwa.mohamadi @ gmail.com 

© 2020 S. Karger AG, Baselkarger@karger.com
www.karger.com/ene

DOI: 10.1159/000511306

Keywords
Recurrent neural network · Electroencephalogram wavelet 
analysis · Sonification · Sleep

Abstract
Introduction: Visual sleep-stage scoring is a time-consum-
ing technique that cannot extract the nonlinear characteris-
tics of electroencephalogram (EEG). This article presents a 
novel method for sleep-stage differentiation based on soni-
fication of sleep-EEG signals using wavelet transform and re-
current neural network (RNN). Methods: Two RNNs were de-
signed and trained separately based on a database of classi-
cal guitar pieces and Kurdish tanbur Makams using a long 
short-term memory model. Moreover, discrete wavelet 
transform and wavelet packet decomposition were used to 
determine the association between the EEG signals and mu-
sical pitches. Continuous wavelet transform was applied to 
extract musical beat-based features from the EEG. Then, the 
pretrained RNN was used to generate music. To test the pro-
posed model, 11 sleep EEGs were mapped onto the guitar 
and tanbur frequency intervals and presented to the pre-

trained RNN. Next, the generated music was randomly pre-
sented to 2 neurologists. Results: The proposed model clas-
sified the sleep stages with an accuracy of >81% for tanbur 
and more than 93% for guitar musical pieces. The inter-rater 
reliability measured by Cohen’s kappa coefficient (κ) re-
vealed good reliability for both tanbur (κ = 0.64, p < 0.001) 
and guitar musical pieces (κ = 0.85, p < 0.001). Conclusion: 
The present EEG sonification method leads to valid sleep 
staging by clinicians. The method could be used on various 
EEG databases for classification, differentiation, diagnosis, 
and treatment purposes. Real-time EEG sonification can be 
used as a feedback tool for replanning of neurophysiological 
functions for the management of many neurological and 
psychiatric disorders in the future. © 2020 S. Karger AG, Basel

Introduction

Visualization of brain neurophysiological activities 
has been widely used for the examination of the brain 
functions and disorders [1–3]. Almost all structural and 
functional brain mapping methods such as MRI, func-
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tional MRI [4], positron emission tomography scan, and 
electroencephalography (EEG) [5] use a type of visual 
output to reveal the brain data. Nevertheless, less atten-
tion has been paid to the transformation of brain neuro-
physiological activities into other sensory modalities than 
visual outputs. In this regard, using the human auditory 
system as the most sophisticated physiological equipment 
for precise sound identifiers and differentiators may be 
helpful [6, 7]. When the human visual system can re-
sponse to only limited wavelengths of electromagnetic 
waves [8], the auditory system can accurately differenti-
ate a wide range of sound frequencies and amplitudes [9]. 
EEGs contain many electrophysiological fine-tuned data, 
and instead of visualization, sonification of the output 
from the human auditory system may open new windows 
for future clinical use of EEG.

EEG signals contain a large amount of neuroelectrical 
data, which could be used for diagnostic and interven-
tional purposes. One of the important fields which use 
EEG as a main diagnostic and research instrument is 
sleep medicine. In general, sleep stages are classified as 
rapid eye movement (REM) and non-REM. In REM 
sleep, the EEG signals contain mixed frequencies with 
low-voltage sawtooth waves. In non-REM sleep stage 1 
(N1), eye movements become slow, and the brainwaves 
contain more theta waves (4–7 Hz). In non-REM sleep 
stage 2 (N2) which is recognized as light sleep, eye move-
ments stop, and K-complex and sleep spindles (11–15 
Hz) appear behind the theta waves. The slow wave sleep 
(SWS) contains high-amplitude EEG signals (>75 UV) 
with prominent delta waves (<4 Hz) [10]. Sleep-stage 
classification is a core component of sleep medicine for 
studying normal and disordered sleep. As visual sleep-
stage scoring is a time-consuming method with poor re-
liability and disregard for nonlinear characteristics of 
EEG, different methods have been proposed for auto-
matic sleep-stage classification. Analysis of sleep EEG 
based on time-frequency images (TFIs) has been used for 
the classification of sleep stages. Bajaj and Pachori [11] 
reached a 92.93% accuracy in sleep-stage classification 
using EEG signals. Histogram-based features have also 
been extracted from TFIs and classified by various tech-
niques, such as the support vector machine [12], radial 
basis function [13], neural networks [14, 15], Mexican-
hat wavelet analysis, and Morlet wavelet kernel function 
[16, 17]. Most of these studies have classified sleep stages 
mostly based on the nonlinear dynamics [18] and cha-
otic features of sleep-EEG signals [10, 19]. Methods such 
as Fourier-based spectral analysis extract frequency com-
positions in EEG signals but are unable to capture the 

underlying nonlinear dynamics of the EEG [19]. Decom-
position of this nonlinearity by methods like wavelet 
transform can extract more informative data about brain 
oscillation. Ebrahimi et al. [20] have provided 93% accu-
racy in the classification of N2 and N3 using wavelet 
transform on single-channel sleep-EEG signal. However, 
their method failed to differentiate N1 and REM stages 
[20]. Another study achieved 94.80% accuracy for differ-
entiating of N1, N2, N3, and REM stages based on single-
channel sleep-EEG analysis using Tunable q-factor 
wavelet transform [21]. In another study, automatic 
sleep staging was performed with 90% accuracy using re-
currence analysis on a single-channel sleep EEG, and the 
method could classify subjects with and without mental 
distress using biomarkers based on stage designation 
[22]. In a recent article, Zieleniewska et al. [23] describe 
a parametric description of EEG profiles for the assess-
ment of sleep in disorders of consciousness.

In addition to sleep-stage classification, EEGs as a re-
al-time brain mapping method with the most temporal 
resolution, can be used as a feedback tool for replanning 
and reprogramming of neurophysiological functions. 
This powerful feedback tool can be used for the manage-
ment of many mental conditions such as attention deficit 
hyperactive disorder [24, 25] and anxiety [26–28]. Cur-
rent methods usually convert brain oscillations to visual 
feedback. It seems that the transformation of EEG to 
polyphonic feelingful musical pieces may open a new 
window for neurofeedback and neuromodulation fields. 
The sonification of sleep EEG for sleep-stage classifica-
tion has recently attracted the attention of researchers. In 
this regard, various methodologies such as real-time/of-
fline sonification have been used for the differentiation 
of sleep stages [29], diagnosis of sleep disorders and sleep 
quality assessment [30], detection of anesthesia during 
surgery [31], epileptic seizure diagnosis [32, 33], brain 
control of musical instruments [34], and transformation 
of specific brain patterns into musical compositions [35]. 
Most of these methods have generated note sequences 
and chords based on the limited features of EEG signals. 
Adrian and Matthews (1934) used the amplitude of alpha 
EEG signals as a music generation source for the first 
time [36]. On the other hand, Miranda [35] trained a 
computer using augmented transition networks to detect 
and convert EEG patterns into musical structures [35]. 
In another study, a method was proposed for the seg-
mentation and encoding of EEG frequency bands to 
monody musical rhythms, in which the musical tempo 
changes depending on the EEG signal fluctuations in dif-
ferent sleep stages. As a result, sleep stages were trans-
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formed into various melodies with a specific tempo, but 
the accuracy and reliability of this method for clinical 
applicability were not reported [29]. Olivan et al. [30] 
have mapped the amplitude and frequency of EEG into 
audible signals for the evaluation of sleep quality. This 
study proposed the transformation of signals into audio 
files as a complementary method to support visual inter-
pretation of EEG [30].

An important challenge in EEG sonification is to gen-
erate the most informative and feelingful musical struc-
ture. In addition, the clinical application of sonified EEG 
is an important challenge that has not been investigated 
very well. Transformation of the detailed neuroelectrical 
information extracted from EEG into elegant, detailed 
musical pieces may reveal the neuropsychological fea-
tures of the brain in various emotional, cognitive, and 
arousal states. In the present study, by using the perfor-
mance recurrent neural network (RNN) model, we aimed 
to convert sleep-EEG signals to dynamical feelingful 
western (classical guitar) and eastern musical structures 
(Kurdish tanbur) by polyphonic EEG sonification for 
sleep-stage classification.

Materials and Methods

Proposed Methodology
First, musical databases of guitar and tanbur were created. 

Then, RNN was trained on the musical database. On the other 
hand, EEG signals were pre-processed and artifacts were removed 
by applying independent component analysis. In the next step, an 
optimal mother wavelet was identified using cross-correlation co-
efficient factor. After that, brainwaves and musical pitches were 
mapped by continuous wavelet transform (CWT), and the note 
duration of each musical pitch was specified by discrete wavelet 
transform (DWT). Finally, the musical beat-based feature was cal-
culated, the derived notes and features were presented to the pre-
trained RNN, and the clinical validation of the musical output was 
performed by 2 neurologists. All steps are presented in detail in the 
next sections.

Classical Guitar and Kurdish Makam Database
The rationality of musical structures is critical to the develop-

ment of informative musical pieces when artificial intelligence 
methods are recruited. The rationality that appears in musical in-
tervals and rhythm implies the predictability of a musical structure 
[37]. Rational musical structures are far more predictable com-
pared to emotional musical structures. Emotionality in a musical 
piece is expressed as microtones or “pitch bends” in a musical 
structure. In addition, if the pieces have a constant rhythm (i.e., 

Piano
(standard MIDI):

Tanbour notation:

2

3

a b

c
d

Fig. 1. a Measureless and dynamical ancient Makam. b Kurdish tanbur instrument. c Virtual Makam rationalized 
in terms of rhythm and interval. d Tanbur monody notation and standard polyphonic MIDI notation. MIDI, 
Musical Instruments Digital Interface.
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metric structure), they are rhythmically rationalized. In the cur-
rent research, 2 rational musical structures were applied, and since 
to the extent of the authors’ knowledge, the training of an RNN on 
a measureless musical piece (rhythmically emotional) is not pos-
sible. Measureless music is an emotional musical structure with no 
rhythmic component, in which microtones may also be over-
looked.

The first musical structure was a database of classical guitar 
pieces composed by a Spanish composer Francisco Tarrega (1852–
1909), and the second structure was a database of the Kurdish 
Makams (tonalities), which are often played by tanbur. Guitar is a 
plucked-string instrument with rational intervals, and the classical 
guitar repertoire contains dynamic and rhythmically rationalized 
pieces.

Ancient Kurdish music is taught aurally to musicians and has 
a highly dynamic and emotional structure. Oral or aural tradition 
is a traditional approach to teaching the totality of the dynamics 
and emotions of music. It is impossible to write the entire dynam-
ics on pieces of a music sheet, and the performance is extremely 
more complex than the notation. As the notation of ancient  
Makams is measureless (Fig. 1a), the recognition of the variation-
al rhythm and dynamics is possible through the aural tradition. In 
the present study, the dynamics in the musical database was con-
sidered as far as possible.

Kurdish tanbur is an ancient plucked-string musical instru-
ment with rational intervals (Fig.  1b). Tanbur Makams include 
ceremonial (ancient), Kalaam (Haghani), and virtual Makams 
(Majazi) [38]. Ceremonial or ancient Makams semantically consist 
of epic, romantic, mystical, and worldly states. These Makams are 
rational in interval but irrational in rhythm. In other words, the 
only way to comprehend the rhythm variations and performance 
with true dynamics is the aural tradition, while notation is signifi-
cantly simpler than the performance. Figure 1a depicts a measure-
less notation for a ceremonial Makam (Sar-Tarz). Kalaam 
(Haghani) Makams are sacred voices and are measureless in terms 
of notation. Virtual (Majazi) Makams focus on the daily life of hu-
mans and are rationalized in terms of rhythm, while their rhythm 
remains constant throughout the entire piece. Figure 1c shows a 
sample of virtual Makam (Swar-Swaras) which represents the gal-
loping of horses. In the present study, the tanbur database was 

REM

N1

N2

N3

Time, s

Scale
80

1,250 1,255 1,260 1,265 1,270 1,275 1,280
Fig. 2. EEG signals of sleep stages in epoch 
of 30 s. REM, rapid eye movement.

Whole
note, 4
beats

Half
note, 2
beats

Quarter
note, 1
beats

Eighth
note, 0.5

beats

Sixteenth
note, 0.25

beats

Octave1 Octave2 Octave3

A2(la) A3(la) A4(la) A5(la)

110 Hz 220 Hz 440 Hz 880 Hz

Fig. 3. Note durations and beats.

Fig. 4. Bandwidth of octaves.
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prepared for virtual Makams due to their constant rhythm and 
rationalized structure.

The notation of tanbur Makams is often carried out based on a 
simple agreement [38]. Figure 1d shows the simple monody nota-
tion and polyphonic method used in the present study for the de-
velopment of the Musical Instruments Digital Interface database. 
The database was developed based on the actual frequencies of 
tanbur instead of the previously described method [38]. To this 
end, 5 virtual Makams, including Baya Baya, Janga Ra, Joloshahi-
Sahari, first Joloshahi, and Khan Amiri, were arranged and pro-
vided as the musical database in a polyphonic manner. Previous 
sonification methodologies have mainly generated monody music 
[29]. Although classical Kurdish musical notation is monody 
(Fig. 1a, c), the performance is polyphonic in some repertoires.

Sleep-EEG Database
The Sleep Disorders Research Center in Kermanshah (Iran) 

has provided a polysomnography (PSG) database for normal indi-
viduals and patients with insomnia disorder [39]. The database 
includes EEG, electrocardiogram, electromyography, and electro-
oculography channels, with a sampling rate of 256 samples per 
second for approximately 7 h of sleep for each subject. In addition, 
the database contains power spectral features within a 30-s epoch. 
The PSG data of 11 normal sleepers aged 18–63 years were used 
for the present study. They were interviewed by a sleep clinician, 
and they did not have any psychiatric and neurological disorders 
or any other problems which may affect the sleep and EEG. They 
also did not have any sleep problems based on the interview and a 
whole night PSG.

In the present study, 1 frontal EEG channel (F3) was used for 
the sonification of the sleep-EEG data. Use of single-channel sleep-
EEG signal was valuable for sleep staging [22, 40]. The second sleep 
cycle was selected from each participant to sleep-EEG analysis. 
Sleep stages were classified by the PSG equipment through the 
analysis of the PSG row data including EEG, electrocardiogram, 
electromyography, and electrooculography and confirmed by the 
sleep clinician who was a member of the research team.

Figure 2 depicts sleep-EEG signals at different stages. Prior to 
independent component analysis, a high-pass filter with the cutoff 
frequency of 1 Hz was used to filter the EEG frequencies for the 
removal of artifacts [41].

In the present study, wavelet packet transformation [42, 43] 
was used to decompose the signal and interpret associations be-

tween musical pitches and brainwaves in the proposed method. 
Wavelet packet transformation was performed on 6 levels with 1 
approximation and 6 details. Moreover, CWT was employed for 
the detection of the dominant frequencies and extraction of the 
proper features to grade the sleep stage.

DWT and Mapping of the Brainwaves to the Musical Pitches
A musical scale is a sequence of discrete pitches, with each pitch 

corresponding to a specific frequency. In a rationalized musical 
structure, a musical scale known as an octave contains 13 notes 
with 12 equal intervals. In many cultures, musical intervals are not 
rationalized and contain a narrow distance between the adjusted 
tones known as pitch proximity or microtone.

Tonality, rhythm, and pitch proximity are derived from the 
built-in functional properties of the brain [44]. A binary system 
dominates musical structures; for instance, the note duration of 
tones (Fig. 3) includes the whole note (4 beats), half note (2 beats), 
quarter note (1 beat), and eighth note (0.5 beat). The frequency 
bandwidth of the octaves (Fig. 4) included A2–A3 (span: 110 Hz), 
A3–A4 (span: 220 Hz), and A4–A5 (span: 440 Hz). In addition, the 
binary form is a form of music that is usually used in the baroque 
period.

Brainwaves were decomposed into subbands using the DWT. 
A binary system dominated the frequency bandwidth of each 
DWT subband (Fig.  5). Therefore, the subbands in the 6-level 
DWT bandwidth were approximate 6 (span: 1 Hz), detail 6 (span: 
2 Hz), detail 5 (span: 4 Hz), detail 4 (span: 8 Hz), detail 3 (span: 16 
Hz), and detail 2 (span: 32 Hz).

EEG signals with the sampling frequency of 256 samples per 
second were decomposed by DWT which was applied by db5 
wavelet in the 6 levels (Fig. 6). For choosing the optimal mother 
wavelet, the similarities between 24 mother wavelets (db 1–8, sym 
1–10, coif 1–5, and haar) and sleep-EEG signals were analyzed by 
Pearson cross-correlation coefficient [45–47]. Results indicated 
that Daubechies-5 (db5) Mother wavelet [48] is the optimal one as 
it maximizes the normalized mean Pearson cross-correlation coef-
ficient. Figure 7a depicts db5 wavelet, and Figure 7b shows that  
db5 is the optimal filter to analyze EEG signals of the database.

The frequency of an octave of any pitch is twice that of the first 
pitch. Thus, an octave is a geometrical sequence (Equation 1). In 
this equation, the scale factor (a) is the frequency of the first pitch. 
The common ratio (q) could also be calculated for any octave to 
evaluate the frequency of any pitch based on a given frequency. For 

Musical pitches:
Octave1 Octave2 Octave3

A2(la) A3(la) A4(la) A5(la)

110 Hz 220 Hz 440 Hz 880 Hz

Decomposition
of brainwaves:

A7 D7 D6

A2(la) A3(la) A4(la) A5(la)

1 Hz 2 Hz 4 Hz 8 Hz
Fig. 5. Binary system dominating musical 
pitches and decomposed levels of EEG by 
DWT. DWT, discrete wavelet transform.
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instance, the frequencies of the A2 (FA2) and A3 (FA3) notes was 
110 and 220 Hz, and the common ratio of musical intervals was 
determined using the following equation: 

a × q(n–1) = an → (FA2) × (q12) = (FA3) → q = 12√2;� (1)

In the present study, the common ratio (q) was also used for the 
brainwave subbands. The decomposed levels contained 12 rational 
segments that were mapped to the musical octaves and their ratio-
nal musical intervals (Table 1). This is a new link between musical 
pitches and brainwaves, which is known as a kind of “Parameter 
Mapping Algorithm” [49]. In the present study, CWT was applied 
to extract the exact prominent frequency values of the EEG epochs, 
as it has better resolution than DWT in detecting the dominant 
frequency of continuous signals such as EEG. On other hand, 
DWT was used for signal decomposition, mapping of the brain-
waves to the musical intervals, and mapping of the pitches to prop-
er note durations.

Designing and Training of RNN for Music Generation
Deep-learning methods have been employed for music genera-

tion [50]. In the present study, RNN was employed to generate a 
time series of musical notes in the form of melodies and note se-
quences. RNNs are neural networks, in which a feedback generates 
input and output sequences within a specific time interval instead 
of receiving inputs, thereby generating outputs; as such, RNNs are 
able to learn both current and previous data. Use of back-propa-
gation through time leads to an exploding gradient problem, so the 
long short-term memory (LSTM) architecture was proposed to 
train the RNNs and avoid repetitive multiplications. Moreover, the 
variational auto-encoder was applied along with the recurrent de-
coder for the natural sentences in order to impute the missing 
words [51].

The deep-learning methods used for automatic music genera-
tion (e.g., BachBot) often utilize LSTM to harmonize musical piec-
es [52, 53]. For instance, the DeepBach project uses the pseudo-
Gibbs procedure to generate musical notes [54]. Furthermore, Ma-
genta as an open-source project developed by the Google Brain 
Team has provided models such as drums RNN, melody RNN, 
polyphony RNN, piano roll RNN, neural autoregressive distrib-
uted estimator, and performance RNN in order to generate music 
[55].

Performance RNN can learn and produce feelingful musical 
structures without overlooking the dynamics [56]. It is differing 
from standard RNN in encoding the musical features as it encodes 
TIME-SHIFT and VELOCITY to generate dynamical music. Dy-
namics refers to the louder and quieter musical expressions that 
vary depending on the feelings of the musician.

In the present study, RNN was designed and trained on the dy-
namical musical databases. Performance RNN from the Google 
Brain Project was selected for training. The RNN contained a sin-
gle hidden layer with 256 LSTM cells for tanbur Makams and 2 
layers with 256 neurons for the classical guitar database. The fea-
tures of the Musical Instruments Digital Interface database were 

Level 1 (D1)

Level 2 (D2)

Level 3 (D3)

Level 4 (D4)

Level 5 (D5)

Level 6 (D6 and A6)0–2 Hz 2–4 Hz

0–4 Hz 4–8 Hz

0–8 Hz 8–16 Hz

0–16 Hz 16–32 Hz

0–32 Hz 32–64 Hz

0–64 Hz 64–128 Hz

0–128 Hz

Fig. 6. Wavelet packet decomposition of 
EEG signals in 6 levels (sampling frequen-
cy: 256 samples/s).

Table 1. Mapping of decomposed EEG sub-bands to note durations

Frequency DWT Bands Note duration

0–2, Hz A6 Low delta Whole note
2–4, Hz D6 High delta Half note
4–8, Hz D5 Theta Quarter note
8–16, Hz D4 Alpha Eight note

16–32, Hz D3 Beta Sixteenth note
32–64, Hz D2 Gamma –
64–128, Hz D1 Noises –

EEG, electroencephalography; DWT, discrete wavelet trans-
form.
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encoded in order to realize the note that had started or released, 
such as NOTE-ON (start note) and NOTE-OFF (release note).

The action mechanism of the performance RNN is to encode 
the TIME-SHIFT and VELOCITY events to learn and generate 
feelingful dynamic music. The default model of the performance 
RNN was used, which is a single 413 dimensional one-hot encod-
ing vector of the features at each training stage. As RNN training 
by the teacher forcing method leads to better results with higher 
accuracy [57], the teacher forcing algorithm was applied during 
training to force the network to learn and generate proper outputs.

A previous study indicated that 32 steps of velocity are suffi-
cient for the encoding classical piano music [56]. For the present 
method, 128 NOTE-OFF, 128 NOTE-ON, 125 TIME-SHIFT, and 
32 VELOCITY events formed the 413 dimensional one-hot encode 
vector of the input (Fig. 8).

Figure 9 depicts the detailed structure of an LSTM cell. LSTM 
is able to add or remove information to the cell state by gates. These 
gates are composed of a sigmoid neural network and a point-wise 
multiplication function. The sigmoid outputs are within the range 
of 0–1, with the zero value preventing anything through, and the 
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Fig. 7. a db5 mother wavelet. b Normalized mean cross-correlation of 24 mother wavelets. db5, Daubechies-5.
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value 1 is to let everything through. For designing an LSTM cell, 
the forget-gate layer was developed first. This layer looks at ht−1 
and xt to decide to accept or eliminate a value. A zero value in the 
sigmoid output means elimination, and value one means accep-
tance. Equation 2 shows ft as the generated value by the forget gate. 
The second step is to store proper information into the cell state, 
which consists of 2 segments; the first segment is the sigmoid and 
an input-gate layer that updates the values. The second segment is 
the tanh layer, which generates the new candidate values that are 
added to the cell state (Equation 3). Following that, the old-cell 
state (Ct−1) has to be updated. The multiplication of ft by the old 

state causes the previous cell state to be forgotten, which has been 
decided to be canceled. Equation 4 depicts the new candidate value 
for the new state. At the final stage, the cell state and the sigmoid 
function produce the output value between −1 and +1 that could 
set the output to the proper final values (Equation 5–7) [58].

ft = σ(Wf․[ht–1, Xt] + bf);� (2)
it = σ(Wi․[ht–1, Xt] + bi);� (3)
C
~

t = tanh(Wc․[ht–1, Xt] + bc);� (4)
Ct = ft × Ct–1 + it × C

~
t;� (5)

ot = tanh(Wo․[ht–1, Xt] + bo);� (6)
ht = ot × tan h(Ct);� (7)

Target output

LSTM layer
(256 LSTM

cells) A

h1 h2 ht-1 ht

X1 X2 Xt-1 Xt

A A A
LSTM
cell

Event from previous step
(413×1 one-hot encode

vector)

ht

ht

Xt

Xt

A

Ct-1 Ct

it

σ

ft Ot

σσ

ht

X

X X

+

Tanh
Ta

nh

ht-1

C~

Fig. 8. Configuration of designed RNN and 
LSTM cells. LSTM, long short-term mem-
ory.

Fig. 9. LSTM cell. LSTM, long short-term 
memory.
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30, s EEG
epoch

Pre-process and
noise removal

Optimal mother
wavelet selection

Split 30, s EEG epoch
to three sub-epochs

First 10, s
of EEG epoch

Second 10, s
of EEG epoch

Third 10, s
of EEG epoch

Convert CWT scales to
frequencies

Extract valid frequencies
higher than 1, Hz

Mean of dominant
valid frequencies

Map the mean value to a
musical pitch (Fig. 5) and

specify note duration
(Table 1)

Map the mean value to a
musical pitch (Fig. 5) and

specify note duration
(Table 1)

Evaluate the
summation of
beats (Fig. 11)

Specify RNN output
length = 12,000 steps

and specify
Tempo = 480 bpm

Specify RNN output
length = 6,000 steps

and specify
Tempo = 240 bpm

Specify RNN output
length = 3,000 steps

and specify
Tempo = 120 bpm

Pre-trained
RNN

Generate 30 s music
specific to sleep stages

(MIDI format)

Specify RNN output
length = 1,500 steps

and specify
Tempo = 60 bpm

If
0.75 ≤ beat

≤ 1

If
1.25 ≤ beat

≤ 2.75

If
3 ≤ beat ≤ 7

If
8 ≤ beat ≤ 12

Map the mean value to a
musical pitch (Fig. 5) and

specify note duration
(Table 1)

Mean of dominant
valid frequencies

Mean of dominant
valid frequencies

Extract valid frequencies
higher than 1, Hz

Extract valid frequencies
higher than 1, Hz

Convert CWT scales to
frequencies

Convert CWT scales to
frequencies

CWTCWT CWT

Fig. 10. Algorithm flowchart. EEG, electroencephalogram; CWT, continuous wavelet transform.
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The Final Algorithm for Music Generation
DWT was applied to explain the mapping between the EEG 

frequency bands and musical pitches (Fig. 5, 6). For a 30-s EEG 
signal, the epoch was divided into 3 sections. CWT was applied to 
each section and 3 note durations (Table  1), and musical notes 
(Fig. 5) were mapped to the EEG epoch based on the mean domi-
nant frequency. The summation of the note beats was the final 
feature used to classify the EEG-signal activity. In general, 29 mu-
sical beat-based features could describe the frequency content of a 
30-s EEG epoch. In addition, 3 notes specific to the EEG epoch 
were generated as the RNN input, and the tempo of the generated 
music was also specified by the musical beat-based feature (Fig. 11). 
Accordingly, the higher musical beat-based feature was associated 
with the lower musical tempo.

Figure 10 is a flowchart that represents the entire algorithm. 
For the sleep-EEG signals, 29 categories were reduced to 4, repre-
senting 4 sleep stages. Moreover, the control of the output tempo 
was carried out based on the beat-based feature. At the default 
tempo of 120 bpm, each step-in time led to the generation of 10-ms 
musical pieces, and the increased step resulted in the increased 
length of the generated music. As indicated in Figures 10 and 11, 
the step value and tempo changed depending on the musical beat-
based feature for the generation of 30-s music.

Validity and Reliability of Music Pieces for Sleep-Stage 
Differentiation
The generated music (see online suppl. files; for all online sup-

pl. material, see www.karger.com/doi/10.1159/000511306) was 
randomly presented by a computer and headphone to 2 neurolo-
gists who were blinded to the participants and EEG signals. They 
had no specialized musical education. Both the order of partici-
pants and the order of sleep stages in each participant were ar-
ranged for presentation randomly. For the first neurologist, the 
tanbur Makams were presented first, then the guitar pieces. How-
ever,  for the second neurologist, the order of presentation was 
reversed, the guitar pieces were presented first, and then the tanbur 
Makams. These specialists were asked to classify each musical 
piece as REM, N1, N2, and SWS. For each participant, eight 30-s 
music pieces, including 4 tanbur and 4 guitar music pieces, each 
piece representing one of the sleep stages (N1, N2, SWS, and 
REM), were selected. Validity of sleep staging based on generated 
music was calculated and presented as percent of correct answers. 
Inter-rater agreement was measured by Cohen’s kappa coefficient 
(κ) using Statistical Package for the Social Sciences version 26.

Results

Generation of Music
The relationship between musical pitches and sleep-

EEG brainwaves was defined by a parameter mapping al-
gorithm. This mapping algorithm provided a set of musi-
cal notes as inputs to the RNN for the transformation of 

Note durations specific to the
10 s EEG epochs

Summa
tion

of the
beats

12.00

10.00

9.00

8.50

8.25

8.00

7.00

6.50

6.25

6.00

5.50

5.25

5.00

5.00

4.75

4.50

4.25

4.00

3.50

3.25

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00

0.75
Fig. 11. Musical beat-based features (n = 29) specific to 30-s EEG 
epochs which represents frequency activity of brainwaves.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

U
N

S
W

 L
ib

ra
ry

14
9.

17
1.

67
.1

48
 -

 1
0/

31
/2

02
0 

9:
29

:0
3 

A
M



Sonification of Electroencephalogram for 
Sleep Stage Classification

11Eur Neurol
DOI: 10.1159/000511306

EEG signals into pleasant musical structures. Here, we 
present the process for REM and SWS. Figures 12 and 13 
show two 30-s epochs of the EEG data for SWS and REM 
stages. The 30-s EEG epoch was divided into 3 parts, and 
CWT was applied to each part (Fig. 14, 15). The dominant 
frequency and mean value of each part were extracted 
(Fig. 16, 17). Then, the mean values of the dominant fre-
quencies were mapped to the musical pitches (Fig. 5), and 
the time duration was selected for each dominant fre-
quency (Table 1). The summation of all beats (musical 
beat-based feature) showed the frequency content of 
EEG. Overall, 29 scores were extracted which reduced to 
fewer categories of the EEG databases. Finally, 4 catego-
ries were considered for sleep-EEG classification based 
on the American Academy of Sleep Medicine standards 
[59].

The musical beat-based feature was calculated for var-
ious sleep stage’s EEG epochs. As is observed in Figure 18, 
the N1 musical beat-based feature was often within the 
range of 0.75–1. In the REM stage, the beat values were 
determined within the range of 1.25–2.5, and the values 
were within the range of 4–8 in N2. The beat values of 

6–12 belonged to the SWS sleep stage. According to this 
classification, 4 values were selected for the musical tem-
po that was generated by the RNN (Table 2).

The beat values were overlapped in some of the EEG 
epochs because of various reliability of sleep staging. For 
instance, the EEG epoch of N2 with the reliability of <35% 
and SWS EEG with the reliability of higher than 70% may 
have equal beat values. At any rate, 29 scores were pre-
sented to demonstrate the activity level of EEG, and the 
final results were matched to the American Academy of 
Sleep Medicine standards, thereby resulting in the gen-
eration of music with 4 different tempos (Table 2).

Validity and Reliability
All 30-s musical pieces comprising 44 tanbur and 44 

guitar pieces (online suppl. material), including 4 musical 
pieces for each instrument for each participant, were ran-
domly presented to 2 neurologist co-authors. They had 
not any musical knowledge but described the generated 
music as pleasant tonalities. They also introduced the 
REM musical representations as full-of-dream tones and 
SWS as calming sounds and slower than the other 3 stag-
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Fig. 12. EEG epoch of REM sleep stage. 
EEG, electroencephalogram; REM, rapid 
eye movement.

Fig. 13. EEG epoch of SWS sleep stage. 
EEG, electroencephalogram; SWS, slow 
wave sleep.
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es. Validity was measured as the percent of correct iden-
tification of sleep stages and calculated for each tanbur 
and guitar instrument separately (Table 3). According to 
the result, sleep-stage identification based on sonified 
sleep EEG by the method introduced in the present re-
search has a good validity. The result revealed higher va-
lidity for sleep staging based on guitar musical pieces than 
tanbur musical pieces.

The inter-rater reliability of the method was measured 
by Cohen’s kappa coefficient (κ). According to the result, 
the method was reliable for both tanbur (κ = 0.64, p < 
0.001) and guitar musical pieces (κ = 0.85, p < 0.001). 
Similar to validity, the reliability of the method was high-

CWT of the second part of the EEG epoch

50

30
40

CO
EF

S

20
10

1 500
1,000 1,500

2,000
2,500

Time samples of 10, s EEG

Scales 104
2073194135166197228259281,0311,134

1,237
1,3401,4431,546

1,6491,7521,855
1,958

30

20

CO
EF

S

10

500
1,000 1,500

2,000
2,500

CWT of the first part of the EEG epoch

Time samples of 10, s EEG
Scales

1104
2073194135166197228259281,0311,134

1,237
1,3401,4431,546

1,6491,7521,855
1,958

CWT of the third part of the EEG epoch

1104
2073194135166197228259281,0311,134

1,237
1,3401,4431,546

1,6491,7521,855
1,958

30

40

CO
EF

S

20

10

500
1,000 1,500

2,000
2,500

Time samples of 10, s EEG

Scales

a

c

b

Fig. 14. CWT of first EEG sub-epoch (a), 
second EEG sub-epoch (b), and third EEG 
sub-epoch in REM sleep stage (c). EEG, 
electroencephalogram; CWT, continuous 
wavelet transform; REM, rapid eye move-
ment.

Table 2. AASM sleep classification standard and final musical 
tempos specific to each sleep stage

Sleep stage REM N1 N2 SWS

Musical tempo, bpm 240 480 120 60

N1, nonrapid eye movement stage 1; N2, nonrapid eye 
movement stage 2; AASM, American Academy of Sleep Medicine; 
SWS, slow wave sleep; REM, rapid eye movement.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

U
N

S
W

 L
ib

ra
ry

14
9.

17
1.

67
.1

48
 -

 1
0/

31
/2

02
0 

9:
29

:0
3 

A
M



Sonification of Electroencephalogram for 
Sleep Stage Classification

13Eur Neurol
DOI: 10.1159/000511306

er with guitar musical pieces than tanbur. Detailed sleep-
stage identifications for both identifiers in both musical 
repertoires are presented inTable 4.

Discussion

The transformation of biosignals into visible outputs 
has wide application in medicine. However, less attention 
has been paid to the transformation of brain neurophysi-
ological activities into auditory stimulus and specifically 
musical tonalities. Human auditory system is the most 
sophisticated physiological equipment with a good differ-

CWT of the second part of the EEG epoch
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Fig. 15. CWT of first EEG sub-epoch (a), 
second EEG sub-epoch (b), and third EEG 
sub-epoch in SWS sleep stage (c). EEG, 
electroencephalogram; CWT, continuous 
wavelet transform; SWS, slow wave sleep.

Table 3. Validity of sleep staging based on sonification of sleep 
EEG to tanbur and guitar musical pieces

Tanbur Guitar

Rater 1, % 81.80 95.50
Rater 2, % 84.10 93.20

EEG, electroencephalogram.
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ence threshold for precise sound differentiation. When 
the human visual system can response to only limited 
wavelengths of electromagnetic waves [8], the auditory 
system can accurately differentiate a wide range of sound 
frequencies and amplitudes. Human auditory system has 
a great 2 frequency/intensity discrimination [9]. This 
ability makes the auditory system a good tool for medical 
diagnosis historically. Auscultation as an act of listening 
to body sounds for diagnostic purposes has been used 
from ancient Egypt.

In the present study, sleep-EEG signals were converted 
into a Kurdish tanbur Makam and classical guitar musical 
pieces for sleep-stage classification by neurologists. Due 
to the changes in the sleep ultradian rhythm, the musical 
tempo was also altered, and the RNN generated poly-
phonic pleasant tonalities without overlooking musical 
dynamics and feelings. In the present study, the binary 
feature of the musical pitches was used to find a mapping 
between the musical notes and brainwaves. The brain-
waves were mapped into musical pitches with proper 
note durations by CWT and DWT. The 30-s EEG epochs 
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Fig. 16. Dominant frequencies of Figure 
14a (mean value: 11.62 Hz) (a), dominant 
frequencies of Figure 14b (mean value: 9.36 
Hz) (b), and dominant frequencies of Fig-
ure 14c (mean value: 9.58 Hz) (c). CWT, 
continuous wavelet transform.

Co
lo

r v
er

sio
n 

av
ai

la
bl

e 
on

lin
e

D
ow

nl
oa

de
d 

by
: 

U
N

S
W

 L
ib

ra
ry

14
9.

17
1.

67
.1

48
 -

 1
0/

31
/2

02
0 

9:
29

:0
3 

A
M



Sonification of Electroencephalogram for 
Sleep Stage Classification

15Eur Neurol
DOI: 10.1159/000511306

were divided into 3 10-s sub-epochs. Then, the frequency 
bands of each sub-epoch were decomposed by DWT, and 
the dominant frequency was extracted in each 10-s sub-
epoch by CWT. In addition, 3 musical pitches with spe-
cific time duration were extracted for each sub-epoch. 
Each dominant frequency was mapped to the corre-
sponding musical notes by the parameter mapping algo-
rithm. The time duration of the notes was selected based 
on the dominant frequency level which was decomposed 
by DWT. Note duration represented the musical beat, 

and the summation of these beats made the musical beat-
based feature. The musical beat-based feature was derived 
in order to categorize the activity of the EEG signals, and 
29 different scores were calculated. The musical beat-
based features and musical notes of each epoch were fed 
to pretrained RNN for the generation of music. The high-
er the frequency of EEG activity, the higher the musical 
tempo. Generated musical pieces were presented to 2 
neurologists for sleep-stage classification; then, validity 
and inter-rater reliability were measured. According to 
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Fig. 17. Dominant frequencies of Figure 
15a (mean value: 1.69 Hz) (a), dominant 
frequencies of Figure 15b (mean value: 2.53 
Hz) (b), and dominant frequencies of Fig-
ure 15c (mean value: 3.54 Hz) (c). CWT, 
continuous wavelet transform.
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the result, the neurologists classified sleep stages based on 
the generated musical pieces with good accuracy (above 
81% for tanbur and 93% for guitar pieces). In addition, 
the method had a significant inter-rater reliability for 
both tanbur (κ = 0.64, p < 0.001) and guitar musical piec-
es (κ = 0.85, p < 0.001). Results for guitar musical pieces 
had higher validity and reliability than tanbur musical 
tones. This condition may result from the higher rhyth-
micity of tanbur Majazi Makam than guitar musical piec-
es. Differentiating close tempo in higher rhythmical con-
ditions is more difficult and prone to error. Our neurolo-
gist’s co-authors mistook REM and N2 or N1. REM 
contains more alpha waves (8–12 Hz) which are located 
between N1 (4–7 Hz) and N2 (11–15 Hz) frequencies and 
more closed to N2. Therefore, it may be displaced with 
N2 more than N1.

Various methods have been used for automatic sleep-
stage classification based on sleep-EEG signals (Acharya 
et al. [10]). Ebrahimi et al. [20] had provided 93% accu-
racy in the classification of N2 and N3, but their method 
failed to differentiate N1 and REM stages using wavelet 
transform on bipolar (Pz-Oz) channel sleep-EEG signals 
[20]. Another study had 94.80% accuracy for differentiat-
ing N1, N2, N3, and REM stages based on single-channel 
sleep-EEG analysis using tunable Q-factor wavelet trans-

form [21]. Based on the TFI of EEG, Bajaj and Pachori 
[11] reached 92.93% accuracy in sleep-stage classification 
from EEG signals [11]. In another study, automatic sleep 
staging was performed with 90% accuracy using recur-
rence analysis on a single-channel sleep EEG, and the 
method could classify subjects with and without mental 
distress using biomarkers based on stage designation 
[22]. Results of the present study in the guitar section are 
as accurate as or better than the previous automatic sleep-
classification methods.

Sonification of sleep EEG or other PSG signals is a new 
field. Early studies proposed the transformation of the 
signals to audio files as a complementary method to sup-
port visual interpretation of EEG [30], but in the present 
study, the sleep stages were classified accurately based on 
sonified EEG signals. Fernandes et al. [29] encoded EEG 
frequencies to musical tempo for sleep-EEG sonification, 
but they did not report any accuracy and reliability for 
clinical application of the method. They used a monody 
strategy for EEG sonification [29], but in the present 
study, a polyphonic strategy was used that led to the gen-
eration of pleasant musical pieces. Methods such as Fou-
rier-based spectral analysis extract frequency composi-
tions in EEG signals, but they were unable to capture the 
underlying nonlinear dynamics of the EEG [19]. Decom-

0 105 2015 3025 4035
Sleep EEG epochs, stage 2, 30 s

5045

8
7
6

To
ta

l b
ea

ts
, B

PS

5
4
3
2
1
0

1

0.8

0.6

To
ta

l b
ea

ts
, B

PS

0.4

0.2

0 10 20 30 40
Sleep EEG epochs, stage 1, 30 s

50 60
0

0 105 2015 3025 4035
Sleep EEG epochs, SWS, 30 s

5045

12
10
8

To
ta

l b
ea

ts
, B

PS

6
4
2
0

0 10 20 30 40
Sleep EEG epochs, REM stage , 30 s

50 60

2.5

2

1.5

To
ta

l b
ea

ts
, B

PS

1

0.5

0

a b

c d
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cal beat-based feature of sleep stage 2 (c), and musical beat-based feature of SWS sleep stage (d). EEG, electroen-
cephalogram; REM, rapid eye movement; SWS, slow wave sleep.
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position of this nonlinearity by methods like wavelet 
transform could extract more informative data about 
brain oscillation. Therefore, the present method extract-
ed and converted more detailed informative data that led 
to more detailed tonalities.

Brain process which is recalled during auditive presen-
tation of EEG signals essentially differs from brain mech-
anism which is recruited during visual interpretation of 
EEG. Human auditory system has been evolved for pre-
cise fine differentiation of sound frequencies and can 
amazingly differentiate sounds that are very similar. 
When this ability is compared to the visual system, the 
auditory system is more proficient than the visual system 
to detect small differences of stimulus. EEG contains 
huge fine-tuned neuroelectrical data, and instead of visu-
alization, the sonification of the output may open the new 
windows for future clinical use of EEG. Neuroelectrical 
data which exist in EEG contain detailed information 
such as frequency, duration, amplitude, and inter-elec-
trode changes in signal features. These characteristics are 
very dynamic and change dramatically by time. So, soni-
fication of this signal instead of visualization may help us 
convert more detailed EEG information to auditory  
stimuli.

An important challenge in EEG sonification is to gen-
erate the most informative and feelingful musical struc-
ture. The present method results in the production of 
pleasant feelingful music. The clinicians described the 
REM music as full-of-dream tones and SWS as calming 
sounds. In addition to sleep-stage classification, EEGs as 
real-time brain-mapping method with most temporal 
resolution have been used as a feedback tool for replan-
ning and reprogramming of neurophysiological func-
tions. This strong feedback tool can be used for manage-
ment of many mental conditions such as attention defi-
cits and anxiety [26–28]. The present study converted 
EEG to polyphonic feelingful musical pieces and may 
open a new window for neurofeedback fields.

Although the present method generated musical to-
nalities with good validity and reliability for sleep staging, 
some limitations should be mentioned. Association be-
tween EEG and musical dynamicity was created using 
tempo and frequency changes in EEG signals, and the 
method did not focus on other EEG characteristics such 
as amplitude. Because REM contains frequency waves 
which was located between N1 (4–7 Hz) and N2 (11–15 
Hz), the results for REM and N2 or N1 were similar and 
led to errors in stage classification. Using other EEG pa-
rameters may improve the reliability and validity of the 
method and lead to better differentiation of REM with N1 

Table 4. Detailed sleep-stage identifications for neurologists in 
both musical instruments; light gray colors classified correctly, but 
dark gray colors classified wrongly

Participants Sleep 
stages

Tanbur Guitar

rater 1 rater 2 rater 1 rater 2

1 N1 N1 REM N1 REM
N2 N2 N2 N2 N1
SWS SWS SWS SWS SWS
REM REM N1 REM N2

2 N1 N1 N1 N1 N1
N2 REM N2 N2 N2
SWS SWS SWS SWS SWS
REM N2 REM REM REM

3 N1 N1 N1 N1 N1
N2 REM N2 N2 N2
SWS SWS SWS SWS SWS
REM N2 REM REM REM

4 N1 REM N2 N1 N1
N2 N2 REM N2 N2
SWS SWS SWS SWS SWS
REM N1 N1 REM REM

5 N1 N1 N1 N1 N1
N2 N2 N2 N2 N2
SWS SWS SWS SWS SWS
REM REM REM REM REM

6 N1 N1 N1 N1 N1
N2 N2 N2 N2 N2
SWS SWS SWS SWS SWS
REM REM REM REM REM

7 N1 N1 N1 REM N1
N2 N2 N2 N2 N2
SWS SWS SWS SWS SWS
REM REM REM N1 REM

8 N1 N1 N1 N1 N1
N2 N2 REM N2 N2
SWS SWS SWS SWS SWS
REM REM N2 REM REM

9 N1 REM N1 N1 N1
N2 N2 N2 N2 N2
SWS SWS SWS SWS SWS
REM N1 REM REM REM

10 N1 N1 N1 N1 N1
N2 N2 N2 N2 N2
SWS SWS SWS SWS SWS
REM REM REM REM REM

11 N1 N1 N1 N1 N1
N2 N2 N2 N2 N2
SWS SWS SWS SWS SWS
REM REM REM REM REM

N1, nonrapid eye movement stage 1; N2, nonrapid eye move-
ment stage 2; SWS, slow wave sleep; REM, rapid eye movement. 
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and N2. In addition, because RNN would not be able to 
learn microtones, the present method is unable to trans-
form EEG to nonrational musical instruments.

Conclusion

In the present study, a new method was proposed for 
sleep-EEG sonification which leads to valid sleep staging 
by clinicians. Future studies may focus on the reliability 
of the method to differentiate normal sleepers from those 
with sleep disorders. The proposed sonification method 
could be used on various EEG databases for classification, 
differentiation, diagnosis, and treatment purposes. The 
method may be developed further to design a neurofeed-
back task in the future. Musical tempo, modality, and to-
nality affect the arousal and neuropsychological states of 
the brain, and cultural constraints may also influence mu-
sical perception and cognition. These considerations may 
result in an effective neurofeedback task through music. 
In addition, brain-based music therapy by real-time EEG 
sonification can be used as a feedback tool for replanning 
and reprogramming of neurophysiological functions. 
This powerful feedback tool can be used for the manage-
ment of many neurological and psychiatric disorders.
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