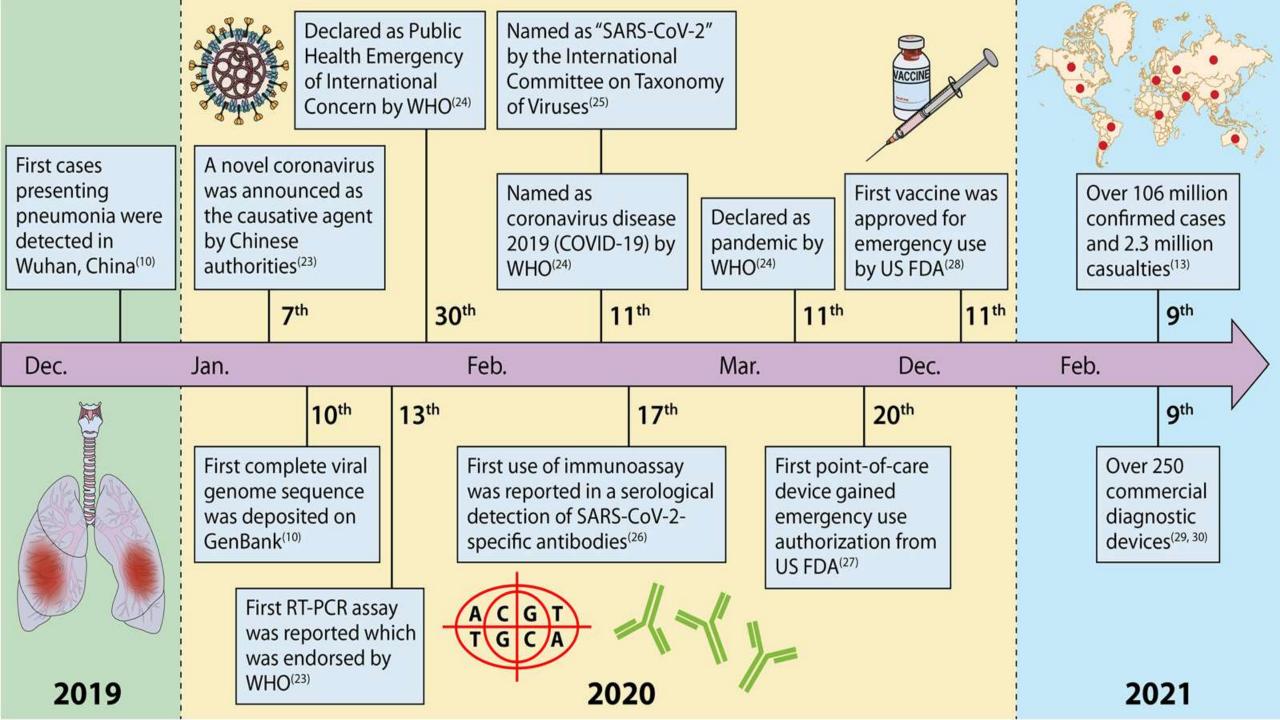
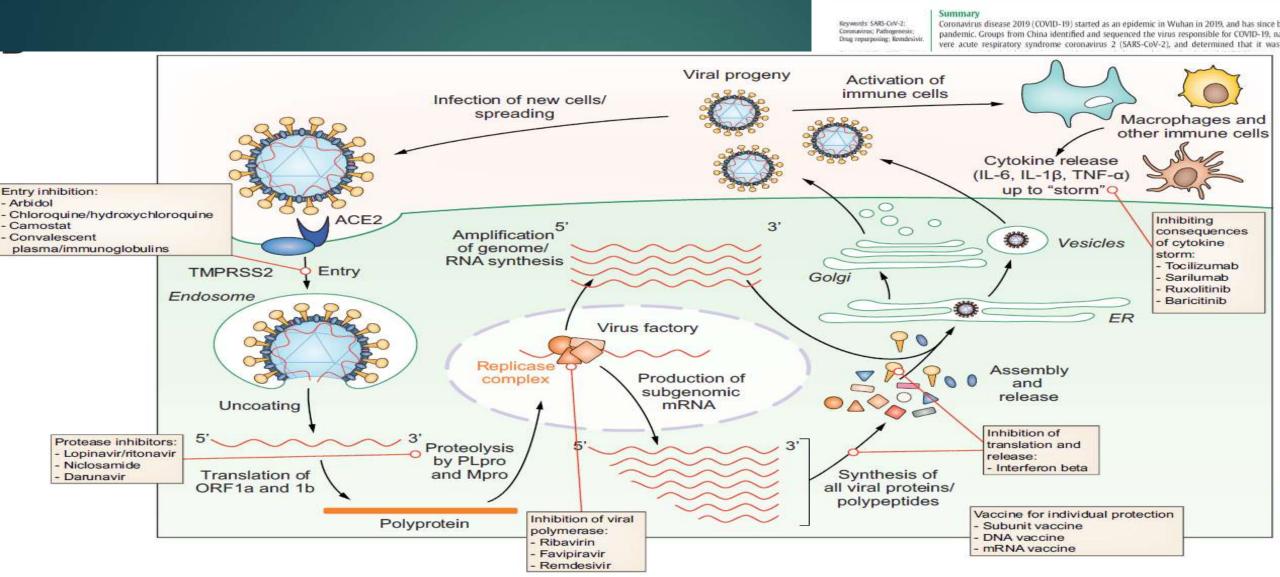

COVID 19 PERIOD

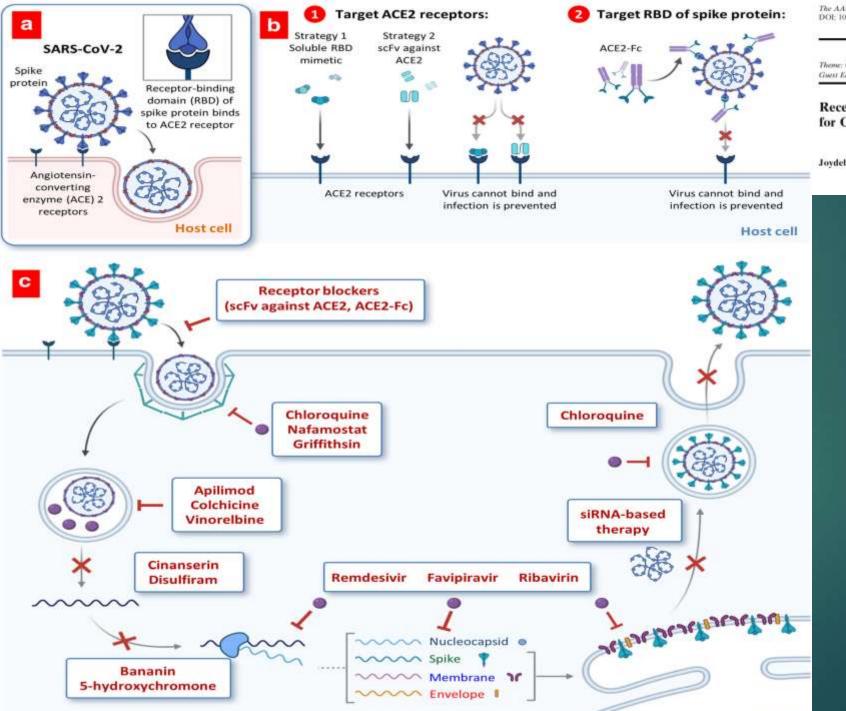

International Reviews of Immunology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/iiri20

Rapid diagnosis of SARS-CoV-2 using potential point-of-care electrochemical immunosensor: Toward the future prospects

Pushpesh Ranjan, Ayushi Singhal, Shalu Yadav, Neeraj Kumar, S. Murali, Sunil K Sanghi & Raju Khan




ANTI COVID DRUGS

COVID-19: Discovery, diagnostics and drug development

'Tarik Asselah^{1,*}, David Durantel², Eric Pasmant³, George Lau⁴, Raymond F. Schinazi⁵

The AAPS Journal (2021) 23: 14 DOI: 10.1208/s12248-020-00532-2 Review Article

Theme: Celebrating Women in the Pharmaceutical Sciences Guest Editors: Diane Burgers, Marilen Morris and Meena Subramanyamditors:

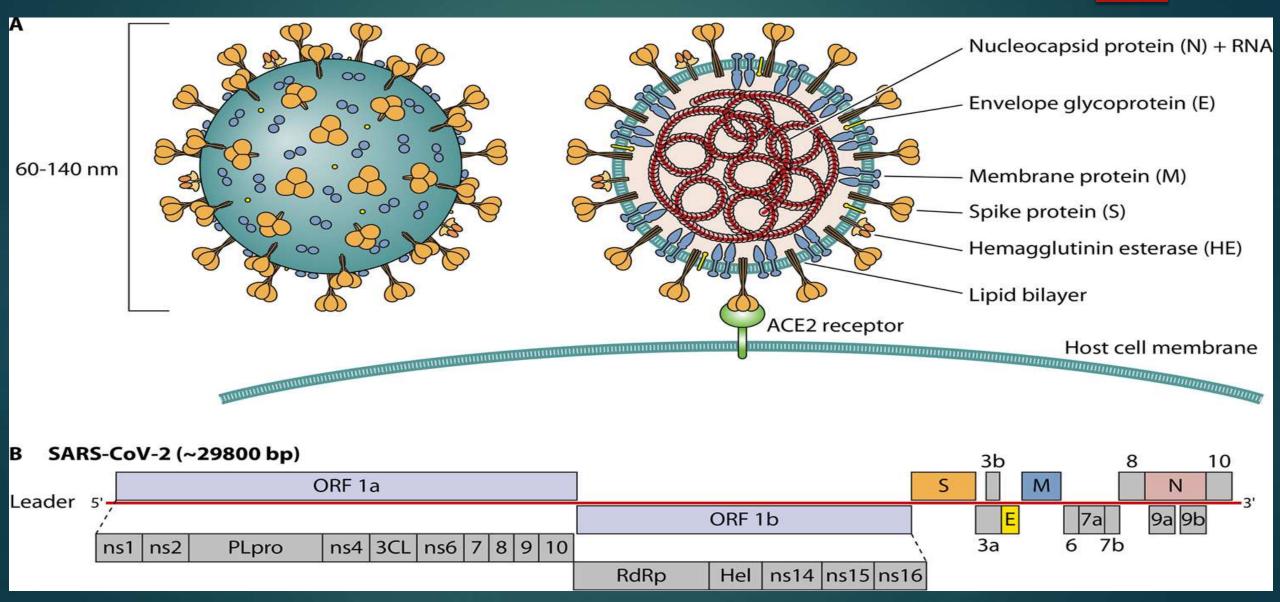
Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19

Joydeb Majumder^{1,2,3} and Tamara Minko^{1,2,3,4}

Drug	Mode of Action	Mode of Administration
Antiviral		
Remdesivir	Nucleotide analogue	intravenous
Chloroquine/hydroxychloroquine (Aralen/Plaquenil)	Heme polymerase inhibitor	Oral
Lopinavir + ritonavir (Kaletra)	Protease inhibitor	Oral
Favipiravir (Avigan)	RNA polymerase inhibitor	Oral
Umifenovir (Arbidol)	Inhibits membrane fusion (entry)	Oral
Camostat	Protease inhibitor	Oral
Ribavirin	Lower respiratory tract infection due to RSV	Inhalation
Anti-inflammatory		
Interferon alfa-2b	Immune modulator	Sub-cutaneous
Tocilizumab (Actemra)	IL-6R Ab	intravenous
Sarilumab (Kevzara)	IL-6R Ab	intravenous
Baricitinib (Olumiant)	Inhibition of JAK	Oral

COVID Vaccines

International Immunopharmacology 96 (2021) 107763


Review

An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages

Hamid Motamedi^a, Marzie Mahdizade Ari^b, Shirin Dashtbin^b, Matin Fathollahi^a, Hadi Hossainpour^a, Amirhoushang Alvandi^{a, c}, Jale Moradi^a, Ramin Abiri^{a, d, *}

SARS-CoV-2 GENOME AND STRUCTURE

LAB DIAGNOSIS TESTS

LABORATORY METHODS FOR THE DETECTION OF SARS-CoV-2

Testing methods	Time to results	Commercially available	Advantages	Disadvantages	LOD* (copies/µl)
RT-PCR	Hours	Yes	High sensitivity, high specificity, reliable, ideal for high- throughput analysis	Requiring sample transportation, substantial equipment, regents and trained personnel	0.009–150
Isothermal PCR	15–60 mins	Yes	High sensitivity, high specificity, point-of- care testing, user friendly	Complex primer design, prone to non-specific amplification and false- positive results	0.13-7.0
ddPCR	Hours	Yes	Ultra-high sensitivity, high specificity, ideal for pooling analysis	More expensive than common RT-PCR	0.01-0.63
Antibody test	15 mins- several hours	Yes	Convenient and safe, high specificity	Moderate sensitivity, cross-reactivity, retrospective nature (not suitable for diagnosis)	NA
Rapid antigen test	15–30 mins	Yes	Rapid, visual readout	Requiring strict design of synthetic antibody and expert knowledge on viral etiology, prone to false-negative results	10 ⁵ times higher than RT-PCR
CRISPR	15–60 mins	No	High sensitivity, high specificity, reliable, visual readout, multiplexing	Have not been extensively tested for SARS-Cov-2	6.8
Toehold switch	15–60 mins	No	High sensitivity, high specificity, safe and inexpensive, easy to store and distribute, ideal for wearable diagnostics	Have not been tested for SARS-Cov-2	NA

SPECIMEN TYPES

Specimen Types

- Specimens collected from the upper respiratory tract:
- Flocked nasopharyngeal (NP) coated with multilength fibers swab that is placed in universal or viral transport medium (UTM or VTM, respectively)
- Sampling of the anterior nares (Na)
- Oropharyngeal (OP) swabs
- Washes/aspirates from the nasopharynx, nose, or throat OP swab along with sampling of the anterior nares
- BAL fluid
- Endotracheal secretions
- Sputum
- Saliva

Transport Media

- UTM or VTM
- Amies transport medium, sterile normal saline
- Phosphate-buffered saline PBS
- M4 medium
- Minimal Essential Medium (MEM)

Timing of Specimen Collection

SARS-CoV-2 RNA can be detected early in the pre symptomatic stage of the disease and later on, even after recovery

Real-Time RT-PCR false-negative rates could be minimized by testing 2 to 3 days after symptom onset, with an average time of symptom onset of 5 days post exposure

Repeat testing can be considered for individuals with an initial negative test result but for whom there is a high level of clinical suspicion

Detecting SARS-CoV-2 RNA from stool is possible in the presence or absence of gastrointestinal symptoms

The magnitude of the viral load and duration of shedding depend on:

The Specimen type The anatomical site of illness The severity of illness The host immune response to infection

In patients with mild disease

In Upper respiratory tract:

From 7.9 to 20 days after symptom onset From 6 to 30.8 days in cases with moderate to severe illness

In the lower respiratory tract:

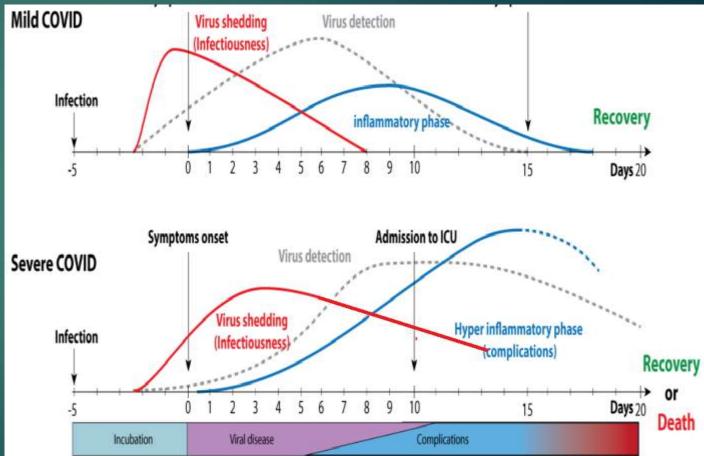
From 8 to 38.4 days for mild cases

Between 6 and 26.9 days for moderate to severe illness

The mean duration of SARS-CoV-2 RNA detection from symptom onset in mild adult cases

12.1 days (95% CI, 10.1 to 14.1 days) in the upper respiratory tract and 24.1 days (95% CI, 10.0 to 38.2 days) in the lower respiratory tract

For moderate to severe cases


The pooled estimates for the duration of SARS-CoV-2 RNA positivity: In the upper respiratory tract were 15.8 days (95% CI, 11.1 to 20.6 days) 23.2 days (95% CI, 21.5 to 25.0 days) in the lower respiratory tract

In cases of mild adult disease

- SARS-CoV-2 RNA:
- In the upper respiratory tract was maximal on day 4, at approximately 6.6108 copies/ ml
- In lower tract viral loads peaked at approximately 2.7108 copies/ml on day 6 after symptom onset

Viral Shedding

While most individuals with mild disease clear the virus within 10 to 20 days, in some cases with severe COVID-19, the duration of shedding can be prolonged 83 and 111 days after

Gastrointestinal Specimens

- Detecting SARS-CoV-2 RNA from stool is possible in the presence or absence of gastrointestinal (GI) symptoms, however, only 1% of patients had detectable RNA in their stool in the absence of positive respiratory Specimens
- For some patients, viral shedding in stool can occur for a longer period than in the respiratory samples and could help diagnose infection if upper and lower respiratory tract specimens are negative but there is a high suspicion of disease
- Of individuals who test positive with GI specimens, the median duration of RNA shedding in the GI tract is 12.5 days following negative respiratory tract specimens

Less frequently, shedding in stool can be prolonged and has been documented up to 70 days after symptom onset or 33 days following clearance from the respiratory tract

Serum Specimens

- Immunological appear 6 days after symptom onset, as viral RNA levels begin to decline
- The first detectible antibody in human blood is IgM, followed by IgG
- Both IgA and IgM decline rapidly over the course of infection
- The median seroconversion times for total antibody, IgM, and IgG were 9, 10, and 12 days after symptom onset (or 15, 18, and 20 days after exposure), respectively.

Specimen Preprocessing Requirements

- Preprocessing step like heat lysis or inactivation using guanidinium salts before nucleic acid extraction and amplification
- Specimen types such as sputum may require mucolytic agents such as dithiothreitol (DTT), N-acetyl-L-cysteine (NALC), or proteinase K (PK)
- Centrifugation for specimens like stool and PK digests for tissues (e.g., lung biopsy specimens), Specimen aliquoting

MOLECULAR METHODS FOR VIRAL RNA DETECTION

Molecular Methods for Viral RNA Detection

Real-time RT-PCR

Isothermal amplification technologies

Reverse transcription-recombinase polymerase amplification Transcription-mediated amplification Nicking enzyme-assisted reaction Reverse transcription–loop-mediated isothermal amplification CRISPR-CAS technology

REAL-TIME RT-PCR

Real-time RT-PCR

Douise (assau (manufasturer)	Mathad	Target gang(a)	Suppimon turno(c)	Authorized	Time /throughout	LoD ^b
Device/assay (manufacturer)	Method	Target gene(s)	Specimen type(s)	setting(s)	Time/throughput	1121200
cobas 6800/cobas SARS-CoV-2 (Roche Molecular Systems, USA)	RT-PCR	ORF1ab + E	NS, NPS, OPS	H, M, H- pooling	3 h for the first-run results but 90 min per run in continuous mode/864 samples per 8 h	46 copies/ml
Abbott m2000/RealTime SARS- CoV-2 (Abbott Diagnostics, USA)	RT-PCR	RdRp + N	NS, NPS, OPS, BAL fluid	Н	7 h per run/470 samples per 24 h	100 copies/ml
NeuMoDx 288/NeuMoDx SARS- CoV-2 (NeuMoDx Molecular, USA)	RT-PCR	Nsp2 + N	NS, NPS, OPS, BAL fluid, saliva	Н, М	1.3 h per run/288 samples per 8 h	150 copies/ml
Panther Fusion/Aptima SARS- CoV-2 (Hologic, USA)	TMA	ORF1ab	NS, NPS, OPS, MTS, NPW, NPA, NA	H, pooling	2.4 h per run/500 samples per 8 h	0.026 TCID _{so} / ml
Liaison MDX/Simplexa COVID-19 Direct (DiaSorin Molecular, Italy)	RT-PCR	ORF1ab + S	NS, NPS, NW, NA, BAL fluid	Н, М	1 h per run/8 samples per run	500 copies/ml
FilmArray/BioFire Respiratory Panel 2.1 (BioFire Diagnostics, USA)	RT-PCR	S + M	NPS	H, M	2-min hands-on time/1 h per run	160 copies/ml
ePlex/ePlex SARS-CoV-2 (GeneMark Diagnostics, USA)	RT-PCR	Ν	NPS	Н, М	2-min hands-on time/1.5 h per run	750 copies/ml
GeneXpert Xpress/Xpert Xpress SARS-CoV-2 (Cepheid, USA)	RT-PCR	E + N2	NS, NPS, OPS, MTS, NW, NA	H, M, W	1-min hands-on time/ 45 min per run	0.02 PFU/ml
Accula Dock/Accula SARS-CoV-2 (Mesa Biotech, USA)	RT-PCR	Ν	NS, MTS	H, M, W	5-min hands-on time/ 30 min per run	150 copies/ reaction

Contents lists available at ScienceDirect

Journal of Clinical Virology

journal homepage: www.elsevier.com/locate/jcv

theory to

Short communication

Detection of SARS-COV N2 Gene: Very low amounts of viral RNA or false positive?

Francesca Falasca ^{b, 1}, Ilaria Sciandra ^{b, 1}, Daniele Di Carlo^a, Massimo Gentile^{a, b}, Alberto Deales^b, Guido Antonelli^{a, b}, Ombretta Turriziani^{a, b, *}

^a Department of Molecular Medicine, Sapienza University, Rome, Italy
^b Sapienza University Hospital "Policlinico Umberto I", Rome, Italy

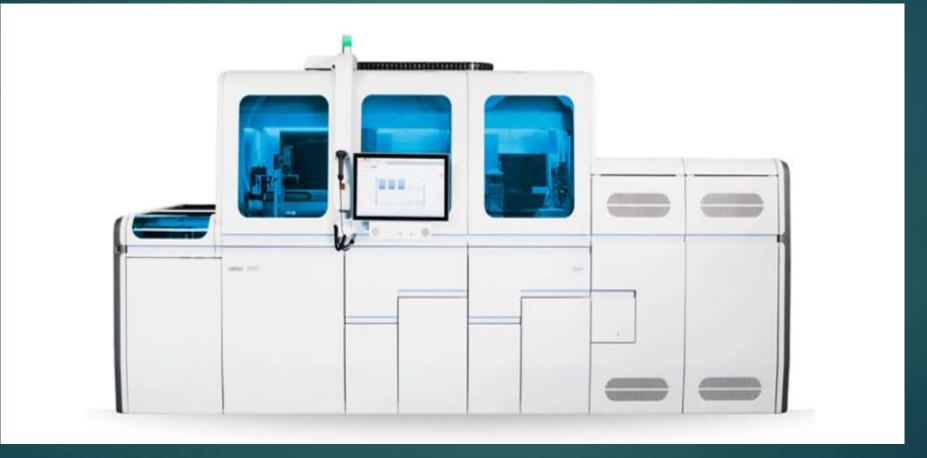
Xpert® Xpress SARS-CoV-2 (Cepheid, Sunnyvale, CA) detect the nucleocapsid gene (N2 region of the N-gene) and envelope gene (E) in respiratory specimens

The limit of detection (LoD) was reported at 100 copies/ml

We suggest suspecting false positive results when only the N gene is detected with Ct values >39. Ct (>39)

RESEARCH ARTICLE

MEDICAL VIROLOGY WILEY


Evaluation of seven commercial RT-PCR kits for COVID-19 testing in pooled clinical specimens

Atul Garg 💿 | Ujjala Ghoshal | Sangram S. Patel | D. V. Singh | Akshay K. Arya | Shruthi Vasanth | Ankita Pandey | Nikki Srivastava

S No	Name of Kit	Manufacturer	Regulatory clearance	Target genes	Limit of detection	Kit interpretation
1	Allplex 2019-nCoV assay	See gene	US-FDA	E, N, RdRP	4167 copy/ml	C _t < 40 positive
2	Patho Detect RT-PCR kit	Mylab	ICMR, India	E, RdRP	-	-
3	FOSUN COVID-19 RT- PCR Kit	Fosun	US-FDA	E, N, ORF1ab	300 copy/ml	C _t < 36 positive
4	TRUPCR SARS-CoV-2 RT- qPCR kit	Black Biotech	US-FDA	E, N, RdRP	10 copy/μl	C _t < 35 positive
5	TaqPath COVID-19 Combo Kit	Thermo Fisher Scientific	US-FDA	S, N ORF1ab	2 copy/μl	C _t < 40 positive
6	Lab Gun Real-Time PCR Kit	Lab Genomics	US-FDA	E, RdRP	20 copy/μl	C _t < 40 positive
7	Real-Time Fluorescent RT- PCR Kit for 2019- nCoV	BGI Genomics	US-FDA CE-IVD	ORF1ab	150 copy/µl	C _t < 37 positive

	Lab Gun	Fosun	BGI	Thermo Fischer Scientific	Black Bio	My Lab	Seegene
Sensitivity	93.02% (80.9%-8.5%)	95.2% (83.8%-99.4%)	100.0% (91.1%-100.0%)	100.0% (91.1%-100.0%)	100.0% (91.1%-100.0%)	88.8% (75.9% - 96.2%)	100.0% (91.1%-100.0%)
Specificity	100% (69.1%-100%)	100% (69.1%-100%)	100% (69.1%-100%)	100% (69.1%-100%)	100% (69.1%-100%)	100% (69.1%-100%)	100% (69.1%-100%)
Positive predictive value	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Negative predictive value	76.9% (52.8%-90.8%)	83.3% (56.3% -95.0%)	100.0%	100.0%	100.0%	66.6% (46.6%-82.0%)	100.0%
Accuracy	94.3%	96.15%	100.0%	100.0%	100.0%	90.9%	100.0%

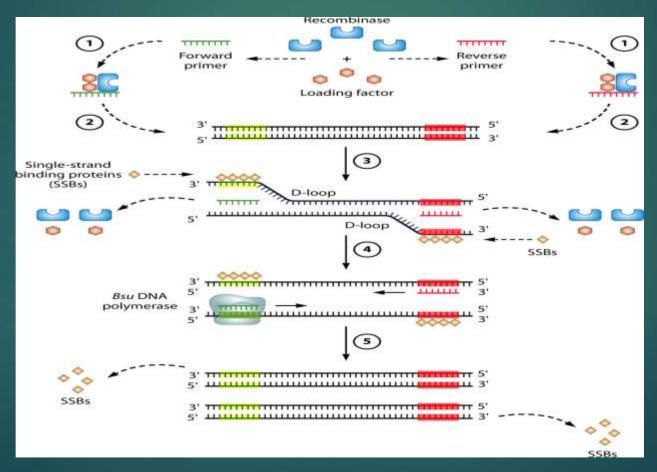
Automation: cobas 6800 instrument

Hologic Panther

NeuMoDx SARS-CoV-2 assay

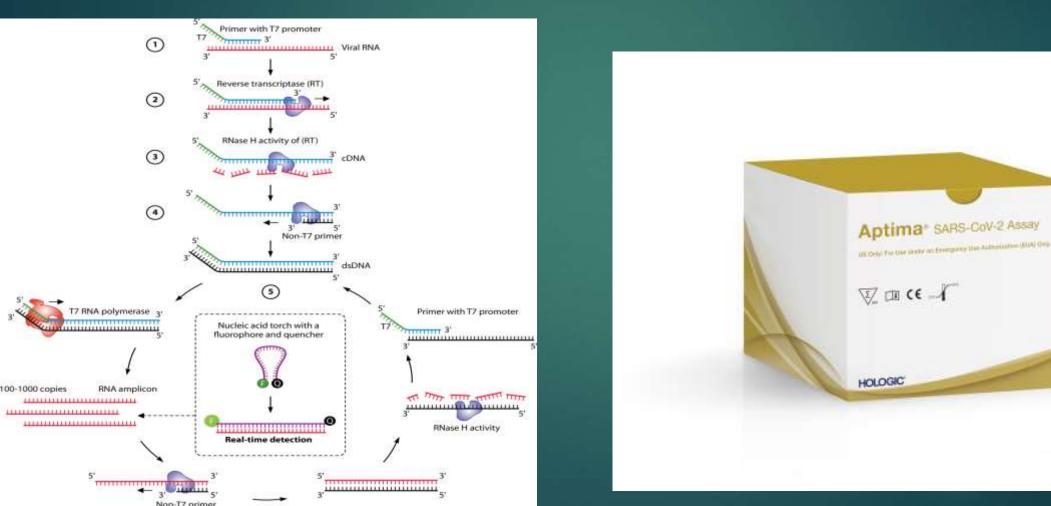
RT-PCR-based rapid diagnostic tests

Provides results in about 45 min, with a 5-min hands-on specimen processing time


ISOTHERMAL AMPLIFICATION TECHNOLOGIES

Isothermal amplification technologies

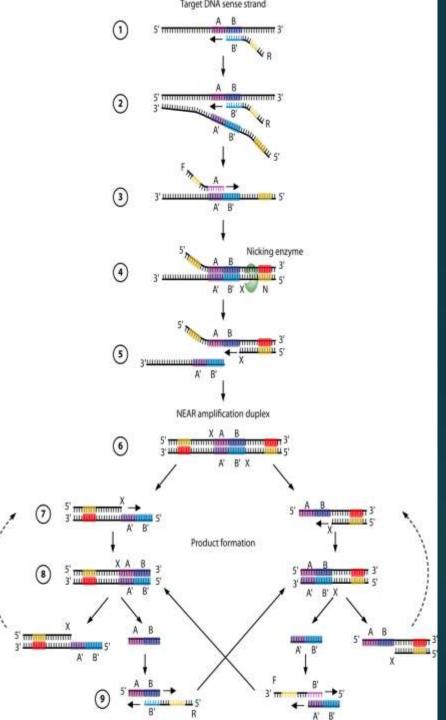
- Reverse transcription-recombinase polymerase amplification
- Transcription-mediated amplification
- Nicking enzyme-assisted reaction
- Reverse transcription–loop-mediated isothermal amplification
- **CRISPR-Cas** technology


Reverse transcription-recombinase polymerase amplification

Approximately 4 copies/reaction in a 10-min reaction

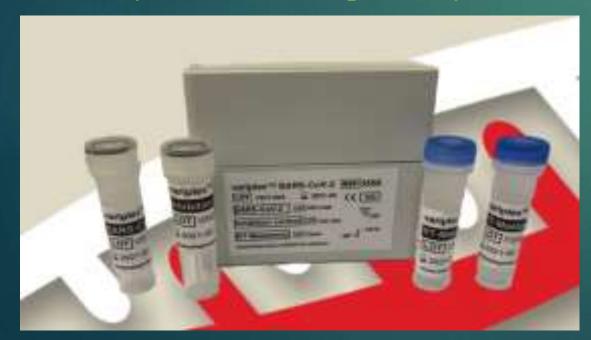
Transcription-mediated amplification

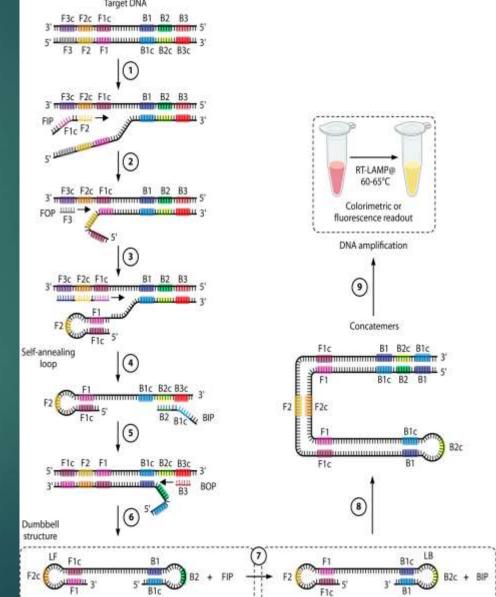
Aptima SARS-CoV-2 assay showed similar analytical sensitivity, with LoDs ranging between 62.5 and 125 copies/ml



Nicking enzyme-assisted reaction

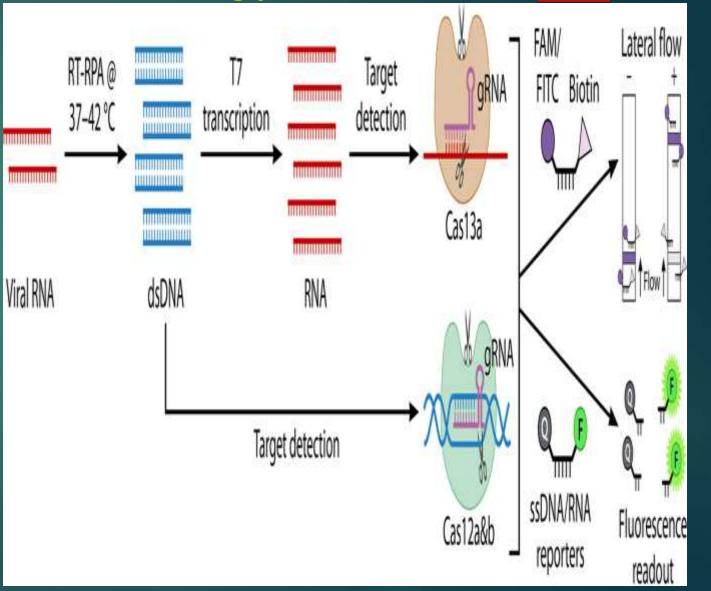
Abbott Diagnostics

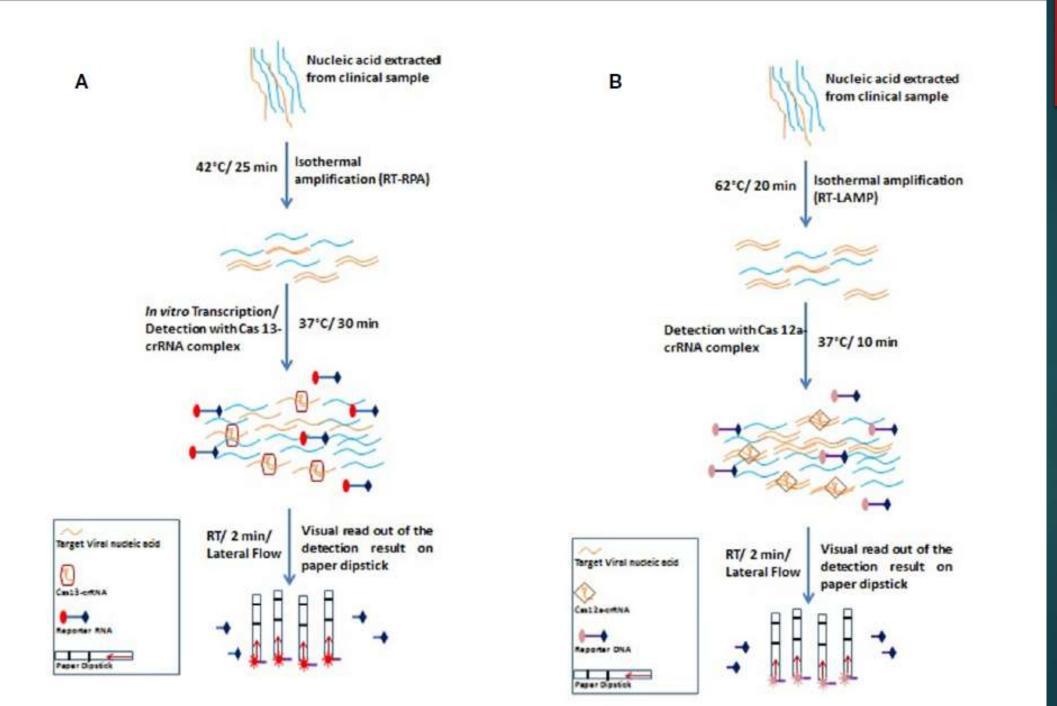

- Specificity/negative percent agreement (NPA) near 100%
- but relatively poor sensitivity/positive percent agreement (PPA) of between 48% and 70%
- While other studies showed a high specificity/NPA (;100%) as well as high sensitivity/PPA values above 90%



Reverse transcription–loop-mediated isothermal amplification

Real-time SARSCoV-2 RT-LAMP (Variplex; Amplex Diagnostics, German


The analytical sensitivity of most RT-LAMP assays was found to be in the range of 100 to 200 copies per reaction sensitivity of 80% and a specificity of 73%



CRISPR-Cas technology

SHERLOCK CREST DETECTR AIOD-CRISPR RISPR/Cas12a-NER CONAN

False negative results

Inappropriate sample collection Inappropriate extraction workflow Inappropriate Real Time-PCR workflow

Inappropriate sensitivity of the assays used Low amounts of viral RNA (e.g., early or late in COVID-19 disease).

scientific reports

OPEN

Predictors of negative first SARS-CoV-2 RT-PCR despite final diagnosis of COVID-19 and association with outcome

Jean-Baptiste Lascarrou^{1,2^{III}}, Gwenhael Colin^{2,3}, Aurélie Le Thuaut⁴, Nicolas Serck⁵, Mickael Ohana⁶, Bertrand Sauneuf⁷, Guillaume Geri⁸, Jean-Baptiste Mesland⁹, Gaetane Ribeyre¹⁰, Claire Hussenet¹¹, Anne Sophie Boureau¹² & Thomas Gille^{13,14}

By multivariate analysis, two factors were independently associated with a lower risk of a first false-negative test,

- headache
- and fatigue/malaise

BIOSENSORS FOR VIRAL RNA DETECTION

Biosensors for viral RNA detection

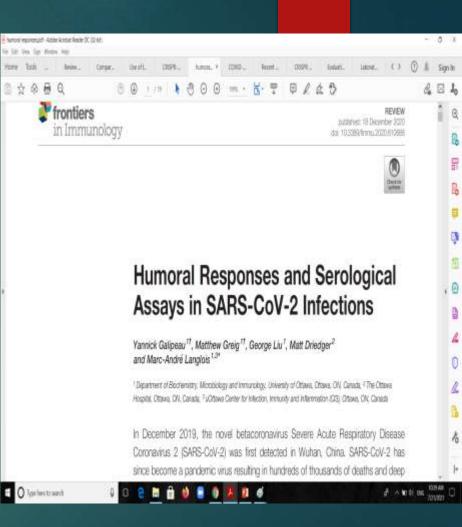
Biosensors are highly promising substitutes for the conventional RT-PCR diagnostic techniques due to their simplicity, cost-effectiveness, rapid detection, and high sensitivity and specificity Electrochemical biosensorsOptical biosensors

Electrochemical biosensors

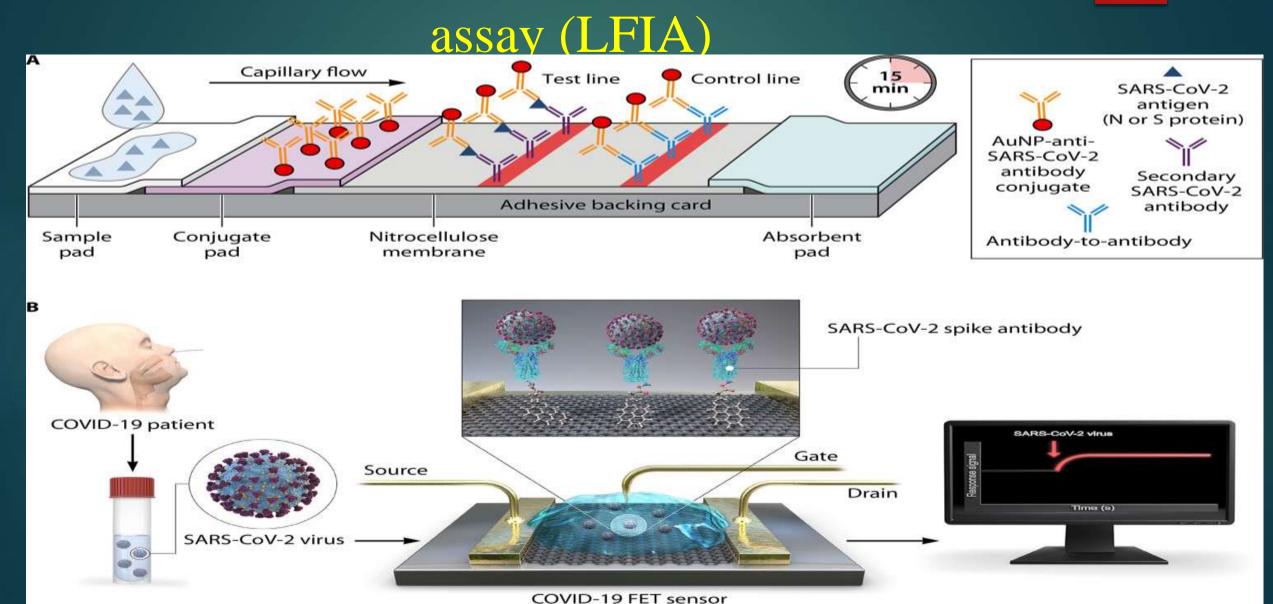
Biorecognition cues triggered by the hybridization reactions result in assessable impedimetric, potentiometric, chronoamperometric, or voltammetric signals

Coronavirus subgroup	Analyte	Assay method	Detection time	Concentration range	Limit of detection	Tested sample
SARS-CoV	Oligonucleotide	Electrochemical (SWV)	2 h 10 min	0.01–1.01 nM	6 pM	Spiked oligonucleotide solutions
SARS-CoV	Oligonucleotide	Electrochemical (CA)	3 h 25 min		8 pM	Spiked oligonucleotide solutions
		Electrochemical (CV)	1 h 30 min		0.5 nM	
SARS-CoV	Oligonucleotide	Electrochemical (CV)	2 h 20 min	2.5–50 pM	2.5 pM	Spiked oligonucleotide solutions
SARS-CoV	Oligonucleotide	Electrochemical (SWV)	3 h	0.1–10 nM	-	Spiked oligonucleotide solutions

Coronavirus subgroup	Analyte	Assay method	Detection time	Concentration range	Limit of detection	Tested sample
SARS-CoV	Oligonucleotide	Optical (colorimetry)	5 min	_	<100 fmol	Spiked oligonucleotide solutions
SARS-CoV	RNA	Optical (SPR)	$\sim 2 h$	_	2 nM	Throat swab samples
MERS-CoV	RNA	Optical (fluorescence)	30 min	_	0.1 pM	Pseudo-serum samples
MERS-CoV	Oligonucleotide	Optical (colorimetry)	_	20-1000 nM	1.53 nM	Spiked oligonucleotide solutions
MERS-CoV	Oligonucleotide	Optical (colorimetry)	10 min	-	1 nM	Spiked oligonucleotide solutions
SARS-CoV-2	Oligonucleotide	Optical (LSPR and PPT)	~14 min	-	0.22 pM	Spiked oligonucleotide solutions


S&RS-COV-2 &NTIGEN DETECTION

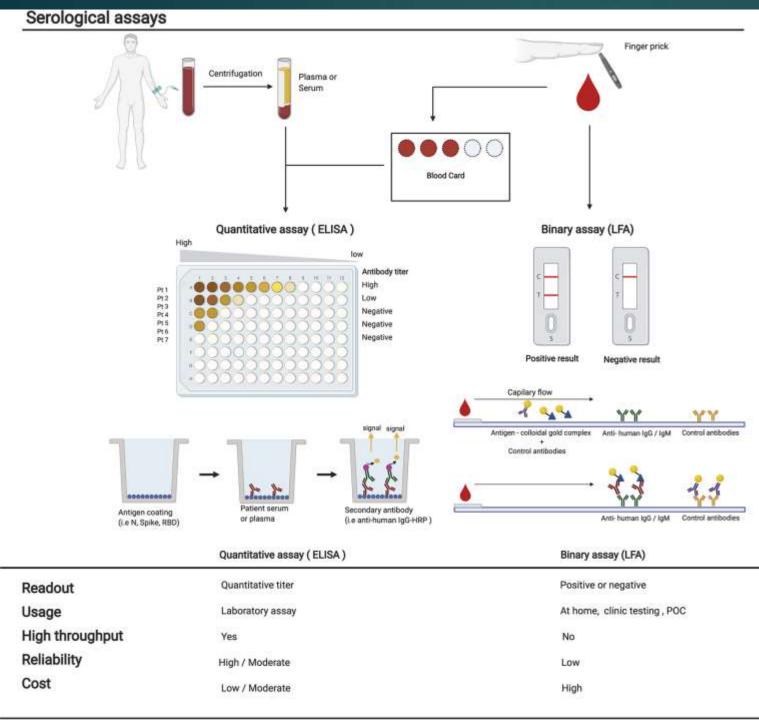
SARS-CoV-2 Antigen Detection


ELISA

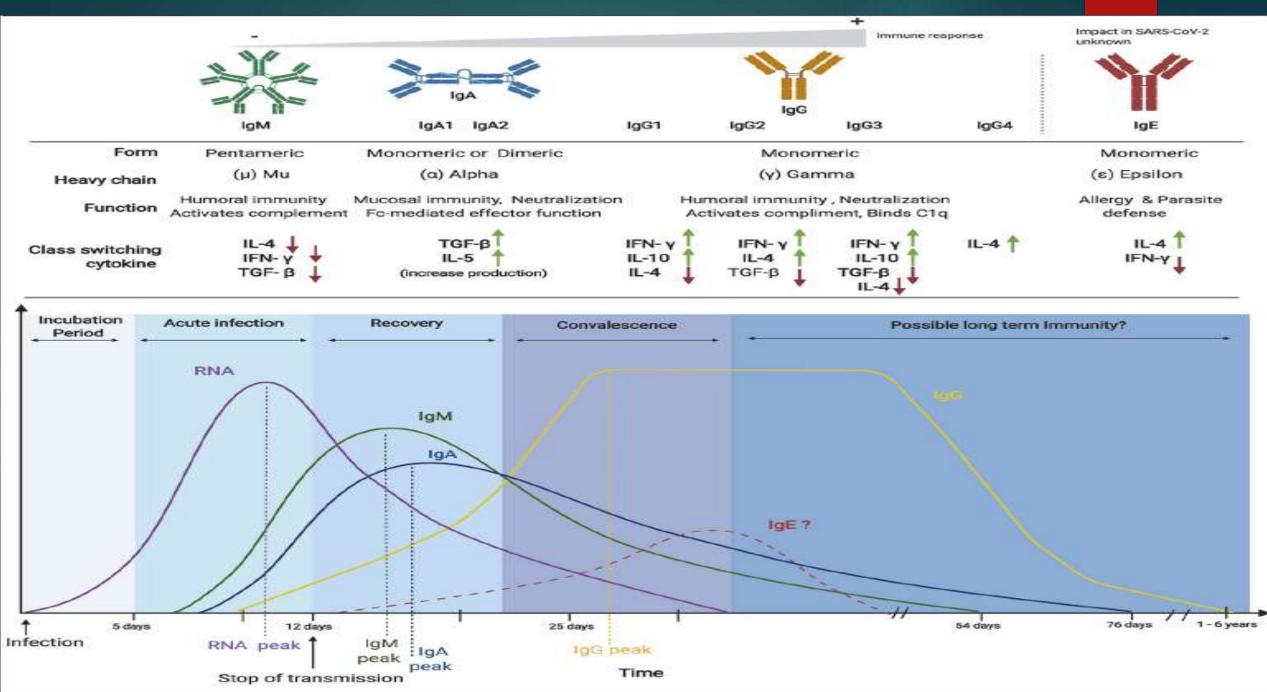
Chemiluminescence immunoassays (CLIAs)

Lateral flow immunochromatographic assay (LFIA).

Lateral flow immunochromatographic


- The average sensitivity of Ag-RDTs was found to be 56.2% (95% CI, 29.5% to 79.8%) The average specificity was 99.5% (95% CI, 98.1% to 99.9%)
- In comparison, NAAT-based RDTs had an average sensitivity of 95.2% (95% CI, 86.7% to 98.3%) and an average specificity of 98.9% (95% CI, 97.3% to 99.5%)

Device or assay (manufacturer)	Methods	Target antigen protein	Specimen type(s)	Authorized detection window (dpo)	Authorized settings	Time (min)	LoD (TCID ₅₀ /ml) ^b
BinaxNOW COVID-19 Ag card home	LFIA, visual readout	N	NS, ANS	7	Home, H, M, W	15	140.6
test ^c (Abbott Diagnostics, USA)	LIN, VISUAI TEAUUUT	N	NJ, ANJ	I	10116, 11, 14, 14	15	140.0
CareStart COVID-19 antigen test	LFIA, visual readout	N	NPS	5	H, M, W	10	800
(Access Bio, USA)							
QuickVue SARS antigen test ^c (Quidel Corporation, USA)	LFIA, visual readout	N	ANS	5	H, M, W	10	7,570
Veritor system for rapid detection of SARS-CoV-2 (BD, USA)	LFIA, instrument readout	N	NS	5	H, M, W	15	140
Sofia 2 Flu + SARS antigen FIA ^c (Quidel Corporation, USA)	LFIA, IFA, instrument readout	Ν	NS, NPS	5	H, M, W	15	91.7
LumiraDx SARS-CoV-2 Ag test ^c (LumiraDx Ltd., UK)	Microfluidics, IFA, instrument readout	N	NS	12	H, M, W	12	32
Clip COVID rapid antigen test ^c (Luminostics Inc., USA)	LFIA, ILA, instrument readout	Ν	ANS	5	H, M, W	30	88
Ellume COVID-19 home test ^c (Ellume Limited, Australia)	LFIA, IFA, smartphone readout	N	MTS	NA	Home <mark>,</mark> H, <mark>M</mark> , W	15	6,309


Serological Immunological Methods for SARS-CoV-2 Detection

SARS-CoV-2 Detection

Chemiluminescence immunoassay
Lateral flow immunoassays
Neutralization assays

NEUTRALIZATION ASSAYS AND THEIR IMPORTANCE

- Involve live authentic SARS-CoV-2 viruses produced in cell culture and therefore require all procedures to be carried outin a Biosafety Level 3 (BSL3)
- Murine leukemia virus (MLV) or vesicular stomatitis virus (VSV) pseudotyped with the SARS-CoV-2 S glycoprotein
- Purified ACE2 to determine the effect of neutralizing antibodies on the ACE2- Spike interaction without the requirement of live cells or viruses.
- cPass SARS-CoV-2 from GenScript Biotech: pan-Ig neutralizing antibodies using the SARS-CoV-2 RBD as the viral antigen for antibody capture
- ELISA-based competition binding assay against
- Additional non- RBD epitopes elsewhere on the S protein have also been shown to neutralize the virus when targeted by antibodies

Percent identity of amino acid sequences between human CoVs and SARS-CoV-2.

	Alphacoronavirus		Betacoronavirus				
	229E	NL63	OC43	HKU1	MERS	SARS	
Full spike	31.4	29.8	30.2	29.5	34.8	76.0	
S1 Domain	31.2	25.0	23.8	23.7	28.3	60.3	
S2 Domain	35.0	33.1	42.3	41.2	43.6	90.0	
RBD	24.1	27.8	23.8	29.4	21.7	73.1	
Nucleoprotein	28.4	32.6	34.6	33.9	49.7	90.5	

Percent similarity of amino acid sequences between human CoVs and SARS-CoV-2.

	Alphacoronavirus		Betacoronavirus					
	229E	NL63	OC43	HKU1	MERS	SARS		
Full spike	61.8	60.0	57.9	58.0	65.7	91.5		
S1 Domain	62.5	51.4	51.7	55.6	61.9	84.2		
S2 Domain	66.5	66.3	72.7	72.7	73.9	98.1		
RBD	59.3	59.3	54.7	67.6	56.0	88.9		
Nucleoprotein	57.9	65.1	62.1	65.1	75.4	97.2		

Alignments between amino acid sequences of all seven human coronavirus were done for the Full spike, spike domains S1, S2, and RBD and the nucleoprotein (N).

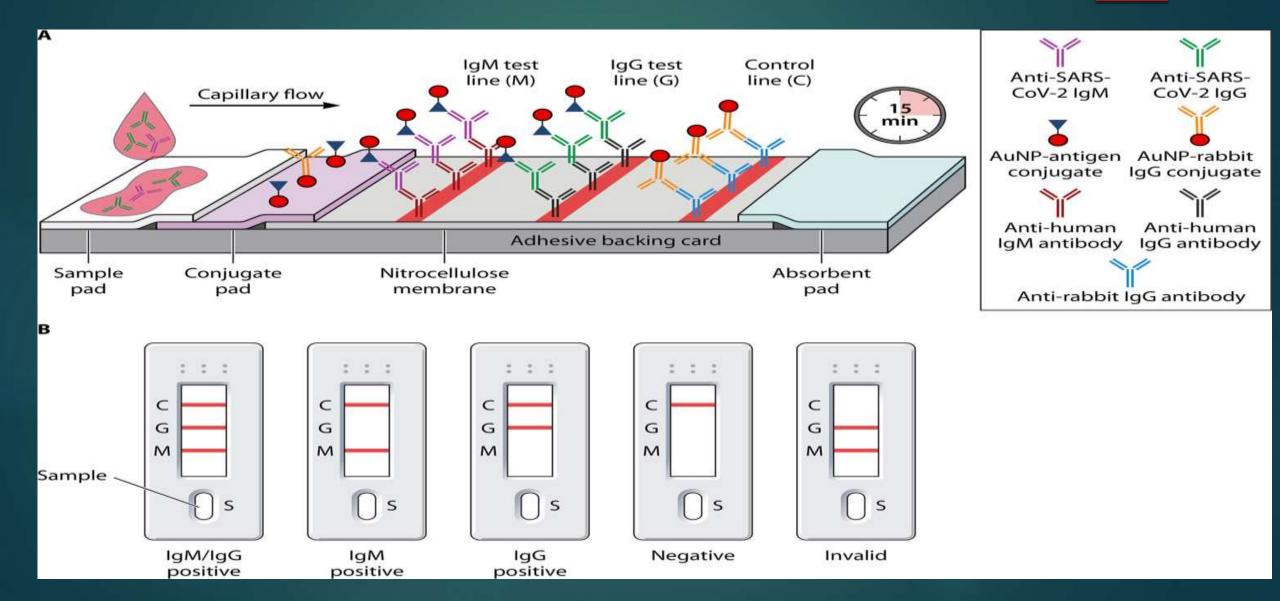
Trends in Microbiology

Review

COVID-19 Antibody Tests: A Valuable Public Health Tool with Limited Relevance to Individuals

Rachel West,¹ Amanda Kobokovich,¹ Nancy Connell,¹ and Gigl Kwik Gronvall O^{1,*}

Due to statistical realities, test results are less accurate for an individual than for a population, if the test is less than 100% accurate, and if the disease is of low prevalence


This has to do with the predictive value, also referred to as the 'base rate fallacy,' which takes into account both test performance and the background population prevalence of disease

In other words, the more prevalent a disease, the higher the predictive value for a positive test

Current and Potential Uses for Antibody Tests for Individuals

- Identifying and Managing Patient Care after Recovery from COVID-19 Donating Convalescent Plasma
- Vaccine Selection
- A Tool for Public Health, Not Individuals

Chemiluminescence immunoassay

Fluorescent microparticle immunoassays

Fluorescent nanoparticle immunoassay (FMI)-based single-molecule array assay that consisted of a mixture of four types of dye-encoded beads coupled to S, S1, S2, and N proteins and used for the detection and differentiation of SARS-CoV-2 IgM, IgG, and IgA Antibodies

When tested on a set of 81 plasma samples, the technique showed 86% sensitivity and 100% specificity for the samples during the first week after symptom onset and 100% sensitivity and specificity for the samples taken after the first week after symptom onset

BIOMARKERS IN COVID-19

Biomarkers in COVID-19

REVIEW published: 30 March 2021 doi: 10.3389/fped.2020.607647

Biomarkers in COVID-19: An Up-To-Date Review

BIOMARKERS FOR COVID-19

- White blood cell (WBC) counts
- markers for inflammatory Conditions CRP
- Procalcitonin [PCT]
- Interleukin 6
- Tests for anticoagulation
- Indicators of tissue damage (alanine aminotransferase [ALT], aspartate aminotransferase [AST], lactate dehydrogenase [LDH], and creatine kinase [CK])

None of these tests are sensitive or specific for COVID-19

BIOMARKERS FOR COVID-19

- 21 studies encompassing 14,126 COVID-19 cases and 56,585 non-COVID-19 cases, only three markers showed sensitivity and specificity values of 50%:
- A decrease in the lymphocyte count
- Increases in CRP
- Increases in IL-6

Patients with critical illness have high plasma levels of inflammatory makers, and elevated levels of d-dimer and lymphopenia have been associated with an increased risk of death

Lymphocytopenia

- (i) direct viral invasion and lysis as lymphocytes express the ACE2 receptor on their surface(ii) lymphocyte apoptosis induced by interleukins
- (iii) reduced lymphocyte turnover due to the "cytokine storm" induced atrophy of lymphoid organs
- (iv) reduced lymphocyte proliferation due to lactic acidosis

Lymphocytes

- Approximately 7 to 14 days from the onset of symptoms, appearance of significant lymphopenia
- Lymphopenia on admission (defined as lymphocyte count 1,100 cells/µl) is associated with three-fold risk of poor outcome, in younger as compared to older patients
- Lymphocyte counts were lower in patients with ARDS, severe disease requiring ICU care, and in non-survivors

Neutrophils

Patients requiring admission to the ICU had higher percentage and absolute number of neutrophils

Monocytes and basophils are also decreased akin to lymphocytes and eosinophils.

Eosinophils

A low percentage of eosinophils in airway and serum

Eosinophil-derived neurotoxin (EDN-1) can be a potential biomarker of COVID pneumonia

Platelets

- ▶ Both thrombocytopenia and thrombocytosis have been observed.
- However severe thrombocytopenia and bleeding are uncommon
- Thrombocytopenia was shown to correlate with other coagulation parameters and increased risk of mortality

Composite Hematological Markers

IL-2 levels correlated positively with the other cytokines and negatively with lymphocyte number An elevated IL-2R to lymphocytes ratio was discriminative of severe and critical illness In fact this ratio was superior to other markers for differentiation of critical illness The ratio was significantly decreased in recovered patients, but further increased in patients who deteriorated, thus correlating with the outcome

- A high neutrophil to- lymphocyte ratio (NLR) at admission can be a good surrogate marker for diagnosis of COVID-19
- A rising NLR can also be used as a prognostic marker for predicting poor outcomes
- Another prognostic marker the lymphocyte-to-CRP ratio (LCR), used in several types of cancers, may also be helpful
- A rise in the NLR and decline in LCR correlates with the severity of COVID-19pecifically, a low LCR at presentation was seen to predict ICU admission and need for invasive ventilation.

Procalcitonin

CRP was elevated in 60.7% of patients, procalcitonin (PCT) in 5.5%,

Lactate dehydrogenase (LDH) in 41% of patients

A cut off of >10 mg/L and >0.5 ng/ml for CRP and PCT respectively have been shown to be predictors of poor outcome

A retrospective study showed that a CRP level of 26 mg/L could serve as a cut-off to predict progression to severe disease

Elevated PCT values were associated with a nearly 5-fold higher risk of severe infection

Cytokines

More than half of admitted patients were found to have elevated IL-6 levels

Higher baseline IL-6 correlated with severity, bilateral interstitial lung involvement and other acute inflammatory markers

IL 6 is good to monitor therapeutic response. Other pro-inflammatory cytokines (IL-1b, IL-2, IL-8, IL-17, G-CSF, GMCSF, IP-10, MCP-1, CCL3, and TNFa) are significantly increased in patients with severe disease

Coagulative Parameters

Coagulopathy in COVID-19 differs from the usual disseminated intravascular coagulation, in having a high fibrinogen, normal or mildly prolonged prothrombin time and activated partial thromboplastin time, platelet count $>100 \times 103$ /ml, but no significant bleeding

D-dimer levels have prognostic value and correlate with disease severity and in-hospital mortality

A level of $>2.0\mu$ g/ml on admission could predict mortality

Cardiac Biomarkers

- LDH CK Creatinine kinase-muscle/-brain activity (CK-MB)
- Myoglobin (Mb) Cardiac troponin I (cTnI)
- Alpha-hydroxybutyrate dehydrogenase (a-HBDH)
- Aspartate aminotransferase (AST)
- N-terminal of the prohormone brain natriuretic peptide (NT-proBNPAmong these LDH, CK, a-HBDH, and
- On the other hand, CK-MB, cTnI, Mb, and NT-proBNP are more myocardial injury specific and increased to varying degrees, especially in severe and critical illness
- Higher levels were associated with higher mortality

Serum Albumin

- Hypoalbuminemia in critically ill patients is multifactorial: Increased capillary permeability
- Decreased protein synthesis
- Increased turnover
- Decreased serum albumin total mass
- Increased volume of distribution
- Increased expression of vascular endothelial growth factor
- Mean serum albumin on admission was 3.50 g/dl and 4.05 g/dl in severe and non-severe COVID-19, respectively

LDH

- ► About 40% of patients presented with increased LDH levels.
- Elevated LDH has been associated with a higher risk of ARDS, need for intensive care and mortality

Time period Biomarkers

<7 days

7-14 days

- Total leucocyte count & lymphocyte count normal or slightly low
- ↑ LDH,
 ↑ AST,
 ↑ ALT,
 ↑ CK,
 ↑ CK-MB may be early markers
 of severe disease and mortality

 Total leucocyte count & lymphocyte count progressively fall to reach nadir at 8–9 days

- Thrombocytopenia may occur
- ↑ IL-6, IL-10, IL-1RA, MCP-1

>14 days

 Increasing total leucocyte count, lymphocyte & platelet count predict recovery while reducing counts predict mortality

Specific role	Biomarkers
Diagnosis	Leukopenia Lymphopenia High NLR ratio † LDH † AST
Assessment of severity	Lymphopenia Lymphocyte subsets - ↓CD4+, CD8+, B, NK cells, ↑ plasma cells ↑ NLR & ↓ LCR ↑ IL-2R/Lymphocytes ratio ↑ IL-6 ↑ CRP, PCT ↑ Ferritin ↑ LDH ↑ D-dimers ↑ Specific cardiac biomarkers – CK-MB, CTnT, Mb, NT-proBNP
Response to therapy	↓ CRP ↓ IL-6, IL-10, TNF-alpha, IL-2R
Prognosis	IL-6 Ferritin LDH CRP, PCT Lymphocyte count NLR LCR Platelet count Specific cardiac biomarkers – CK-MB, CTnT, Mb, NT-proBNP
MIS-C	CBC - ↓ platelets ↑ CRP, ESR, PCT ↓ Albumin ↑ Specific cardiac biomarkers – CK-MB, CTnT, NT-proBNP ↑ IL-6, IL-10, TNF-alpha ↑ D-dimers

Thanks for your attention