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Abstract
The current study aimed to evaluate the levels of some toxic and essential elements (Pb, Cd, Cu, Ti, Ni, Cr, Co, Fe, Ca, Hg, Mn,
Se, and Zn) in the urine of opium-addicted compared to non-addicted cases. In this study, 126 participants were recruited and
their fasting urine samples were collected (63 opium-addicted and 63 non-addicted subjects served as the reference group).
ICP-MS was utilized to detect the concentration of trace elements. Results exhibited that the concentration of all elements than
Ni, Cu, and Zn was markedly different between the addicted and non-addicted groups. Compared to controls, the Cd, Cr, Co, Hg,
Mn, Pb, Se, and Ti levels were higher among opium-addicted cases (p < 0.05) whereas the Fe and Ca concentrations were higher
among controls (p < 0.05). Robust regression analysis showed no statistically significant effect of gender on element levels. It
revealed that age was associated with the levels of Ni and Cu only and also the route of administration was related to the urinary
levels of Co, Cr, Hg, andMn. In conclusion, results confirmed that it is opium consumption that affects the concentration levels of
most elements.
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Introduction

Over the past decade, the consumption of illicit addictive
drugs has been widespread throughout the world. The preva-
lence of illicit opioid use in Western Europe, Western and
Central Europe, and North America has been estimated to be
0.85%, 0.37%, and 0.47% respectively (Peacock et al. 2018).

Asia and specifically the Middle East are the main users of
opioid material and its derivatives. Iran, a country in the heart
of theMiddle East, is known as the main route of the transition
of opium from Afghanistan as the world’s largest opium pro-
ducer to the western countries. Reports claim that more than
half of the opium produced in Afghanistan is transported to
Europe via Iran (Ansari-Moghaddam et al. 2012; Minozzi
et al. 2014; Sadeghi et al. 2017). In the East, Iran shares about
a 900 km border with Afghanistan (Rosen and Katzman
2014). Due to opium flow from Afghanistan, opium is readily
available in Iran at a very low cost, putting various age groups
at risk of drug-abusing. Overall, data suggest an 8% increase
in the addiction rate in Iran annually. Studies estimate the
overall prevalence of opiate usage among male youth by 6%
and female youth by 2.0% reaching up to 22% in the rural
parts (95% CI: 21.3–22.7) (Menati et al. 2017; Ansari-
Moghaddam et al. 2016).

To increase its weight and gain more profit, smugglers
process opium with various stuff which is susceptible to con-
tamination to heavy metals (Alinejad et al. 2018; Ghane et al.
2018; Salehi et al. 2009). The presence of heavy metals in
opioids is a major risk factor for disability and premature loss
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of life for opium users. Due to the high chemical stability, low
degradation, and bioavailability of heavy metals in the body,
they can gradually accumulate in some tissues such as the
blood, liver, kidney, muscle, and bones and cause various
disorders (Rajaei et al. 2012; Mansouri et al. 2012a, 2012b,
2012c; Rezaei et al. 2019). Some studies suggest an elevated
risk of death, coronary artery diseases, laryngeal, bladder can-
cer, stomach cancer, pancreatic cancer, lung cancer, and
esophageal cancer following long-term opium consumption
among opium users compared to their controls (Hosseini
et al. 2010; Malekzadeh et al. 2013; Masjedi et al. 2013;
Nasrollahzadeh et al. 2008).

Toxicity studies show various side effects and symptoms
for overexposure to heavy metals. The increased risks of lung,
thyroid, and pancreatic cancers have been reported as the ef-
fects of inhalation of cadmium (Rezaei et al. 2019; Nozadi
et al. 2021). Fatigue, bronchitis, hepatic necroinflammation,
non-alcoholic fatty liver disease, hypothyroidism, hyperten-
sion and arteriosclerosis, diarrhea, bone fractures, infertility,
central nervous system damage, immune system disorders,
and mental disorders are other reported health effects follow-
ing exposure to cadmium (García-Esquinas et al. 2014; Hyder
et al. 2013; Jacobo-Estrada et al. 2017). Lead causes serious
brain damage such as mental retardation, behavioral prob-
lems, memory disturbances, and mood changes. The most
common complaints of lead poisoning are abdominal pain,
myalgia, and arthralgia (Karri et al. 2008). Patients may use
more opium for pain control, resulting in further lead expo-
sure; thus, a vicious cycle is created. Symptoms of lead poi-
soning may be similar to withdrawal symptoms, which poten-
tially increase opium use and subsequent lead uptake (Sadeghi
et al. 2017; Sazegar and Ebrahimi 2012).

Thus, monitoring the levels of heavy metals in vulnerable
groups is necessary to control their negative outcomes.
Therefore, this study aimed to assess the concentration of
essential and toxic metals (Pb, Cd, Cu, Ti, Ni, Cr, Co, Fe,
Ca, Hg, Mn, Se, and Zn) in the urine of opium-dependents
as one of the target populations at risk of heavy metal conse-
quences compared to normal individuals.

Materials and methods

Study population and sample collection

A total number of 126 subjects was recruited from July to
November 2020 and organized in two groups: the opium-
dependent group (n=63) and the non-opium-dependent group
(n=63). Characteristics of participants including age, gender,
route of administration, amount of opium use, duration of
opium addiction, cigarette consumption, occupation, and ed-
ucation were recorded using a checklist. Case subjects were
selected from opium-addicted individuals attending Imam

Khomeini Hospital and Farabi Hospital in Kermanshah city,
west of Iran. Inclusion criteria were to have a history of opium
use, but individuals with kidney disease, cancer, cardiovascu-
lar disease, or a history of methadone use, or if he/she was
under a specific treatment, were excluded from the study. The
control was selected from individuals accompanied patient at
the hospital or attended hospital for ordinary medical exami-
nations. They did not suffer from any chronic disease with no
history of opium use and smoking. For each participant, 10-ml
urine samples were collected, capped, labeled, and kept in the
refrigerator at −20 °C until analyses. Both groups entered this
study with informed consent. This study had the consent of the
Research and ethics committee of Kermanshah University of
Medical Sciences (IR.KUMS.REC.1398.960).

Element analyses

In this study, urine samples were digested with the nitric acid
and perchloric acid mixture (2:1v/v). For acid digestion, 5 cc
of each urine sample was transferred into 25-ml glass test
tubes. The amount of 2 cc of nitric acid (Merck, Germany)
with a purity of 65% was added to each of the urine samples,
and the mixture was kept at room temperature overnight for
slow digestion. Then, 1 cc perchloric acid (72%, Merck,
Germany) was added to the mixed specimens and placed in
a hot water bath (Bain-Marie) for 4 h at 98 °C until complete
digestion (Dos Santosa et al. 2018). After completing the di-
gestion, the samples were cold at ambient temperature and the
samples were diluted using 25 ml of deionized water. Finally,
samples prepared for heavy metal readings were measured by
an Agilent 7900 ICP-MS.

It is worth mentioning that all standard solutions used for
the analysis of the metal were prepared from the Merck stan-
dard at a concentration of 1000 ppm. The concentration of
heavy metals (Pb, Cd, Cu, Ti, Ni, Cr, Co, Fe, Ca, Hg, Mn,
Se, and Zn) in this study was in micrograms per deciliter. The
performance parameters of ICP-MS were as follows: radiofre-
quency power—1.5 kw; plasma gas flow rate—15 l per min-
ute; carrier gas flow—1.01 l per minute; constituent gas—
0.15 l per minute; sample absorption rate—1.7; sample
depth—10 mm; detector mode—auto; scan type—peak hop-
ping three sweeps per reading and three readings per repeti-
tion; and scan number—3.

Statistical evaluation

Results were reported as mean ± SD or median and interquar-
tile range for numerical variables and number (percentage) for
categorical variables. To assess the differences in subject char-
acteristics, a t-test or chi-square test was utilized as appropri-
ate. Normality assumption was assessed using the D’Agostino
test. One-way ANOVA or Kruskal-Wallis omnibus test was
used to make comparisons between urinary concentration
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levels across multiple groups such as administration routes. A
follow-up univariate analysis using t-test or Wilcoxon
rank-sum test (in the case of non-normal distribution) was
performed to compare the concentration of metals between
opium-addicted cases and their controls. Moreover, the
rank-based robust regression analysis was used to assess the
effect of multi-factor covariates, group, age, and gender, on
metal concentration levels.

Results

Participants and heavy metals in both groups

Using the inclusion and exclusion criteria, 63 opium-addicted
users were recruited and asked to attend a lab for collecting
their first-morning urine samples. The main administration
route of 34.92% of opium-addicted users was inhalation,
30.16% was oral, and the rest (34.92%) administered opium
through both inhalation and oral route. The daily opium use
was 5 g (± 2.31g) on average with 8.56 years (± 5.9) usage
experience (ranged; 3 to 40 years). Opium users were mostly
men (57%) with a mean age of 33 ± 10.75 (17 to 79 years). In
terms of education, 11.1% of cases had an academic degree,
36.5% less than 5 years, and 52.4% completed high school.
Compared to cases, controls were slightly older 34.06 ± 10.63
(18 to 61 years), but more likely to have a higher level of
education (chi-square test, p=0.018, Table 1).

Results demonstrate differences in urinary trace element
levels between opium-addicted and their controls (Table 2).
Particularly, urinary Pb, Mn, and Cd levels in cases were
457.7% (19.5 vs 3.5; p < 0.001), 202.4% (6.35 vs 2.1; p <
0.001), and 175% (3.3 vs 1.2; p < 0.001) higher as compared
to the controls, whereas the levels of Fe (2.7 vs 1.8; p < 0.001)
and Ca (88 vs 83.5; p < 0.001) were higher in controls as
compared to opium users. No significant group difference
was observed in Cu and Ni concentration levels between con-
trols and opium-addicted participants (p > 0.05).

Group, gender, and age effects

A rank-based regression analysis was employed to assess
whether the concentrations of trace elements were affected
by the sex, age, and opioid use habit of participants. The
significance levels of these potential covariates are presented
in Table 3. It turns out that the levels of trace elements were
not affected by the sex of participants, but the age of partici-
pants was an influential factor to affect the levels of Ni (β=
−0.01, p = 0.002) and Cu (β =0.003, p = 0.021) only. In other
words, as individuals got older, the urinary levels of Ni tend to
decline slowly whereas the urinary levels of Cu increased with
age. Moreover, as confirmed by Table 2, the results of
rank-based regression analysis showed that the levels of all
elements than Ni, Cu, and Zn were markedly different be-
tween non-addicted and addicted cases (Table 3). To investi-
gate this further, pairwise comparisons were made between
two groups under each gender type (Table 4). Results con-
firmed that regardless of gender, it is opium consumption that
affects the concentration levels of most elements.

Administration route, daily opium intake, and
consumption period

Since the statistical tests performed so far highlighted the ef-
fect of opium use on the urinary concentration levels of Ca,
Cr, Mn, Co, Se, Cd, Ti, Hg, and Pb elements, we further
investigated if the administration route, daily opium intake,
and consumption period can explain the observed differences
in concentration levels among opium users. The influence of
administration routes on urinary element levels was assessed
using ANOVA or Kruskal-Wallis test followed by t-test/
Mann-Whitney pairwise comparison tests. Figure 1 demon-
strates the results graphically. As it can be seen, the urinary
levels of Ca, Cd, Cr, Pb, Se, and Ti did not differ significantly
between various administration routes (ANOVA/
Kruskal-Wallis test, p> 0.05). But the urinary levels were
route dependent for Co (Mix < In & Oral), Hg (Mix < In &
Oral), and Mn (Oral > In & Mix).

Table 1 Demographic
characteristics of participants Opium users Controls Total p-

value

Age Number 63 63 126 0.591

Mean 33.0 34.06 33.53

SD 10.75 10.63 10.66

Gender Male 27 (57.1%) 35 (55.6%) 63 (50%) 0.940

Female 36 (42.9%) 28 (44.4%) 63 (50%)

Education Primary school 23 (36.5%) 17 (26.9%) 40 (46.8%) 0.018

High school 33 (52.4%) 26 (41.3%) 59 (31.7%)

Academic degree 7 (11.1%) 20 (31.7%) 27 (21.4%)
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We further analyzed the association of urinary element
concentration levels with daily opium intake (in gram) and
duration of opium consumption (in years) using rank-based
regression analysis. Table 5 summarizes the results. The uri-
nary levels of Ca, Cd, Se, Ti, and Pb elements were found to
be all uncorrelated with admiration route, daily opium intake,
and opium consumption period (p > 0.05). Thus, to avoid a
lengthy table, Table 5 only reports an element with at least one
significant result. It appears that compared to parallel con-
sumption of opium via inhalation and oral together, inhaler
opium users faced elevated levels of Co (β = 0.032, p = 0.023)
and Hg (β = 0.006, p = 0.041) trace elements and oral opium
users revealed higher levels of Mn (β = 0.009, p = 0.003). Cr
level was not associated with the administration route, but

higher levels of Cr can be expected with an increase of daily
opium intake and duration opioid consumption.

Discussion

The toxic metal contaminations in drug dependents are among
the main health problems worldwide. The results of our study
showed an elevated urinary level of Pb, Mn, Cd, Cr, Co, Se,
Ti , and Hg and lowered levels of Fe and Ca in
opium-dependent individuals. Previous literature has docu-
mented high blood lead concentrations in opium-dependents
and its relation with some harmful effects of this heavy metal,
including abdominal pain, anemia, induce folate, and vitamin
B12 dysregulation (Amirabadizadeh et al. 2020; Domeneh
et al. 2014; Ghaemi et al. 2017; Khatibi-Moghadam et al.
2016; MohsenMasoodi et al. 2006). It seems that the elevated
concentration of lead in addicted individuals may be a result of
opium consumption. The presence of Pb toxic metal has been
reported in opium samples and different varieties of the opium
poppy (Aghababaei et al. 2018; Aghaee-Afshar et al. 2008;
Ivan and Jozef 2011; Mudiam et al. 2005). For example,
Aghababaei et al. (2018) evaluated contaminations of illegal
opioid-like compounds. They reported elevated concentra-
tions of heavy metals and bacterial contamination of some
illicit drug samples. The highest level of lead was reported
in opium samples compared to crack and heroin
(Aghababaei et al. 2018).

The possible causes for Pb contamination of opium may be
due to contamination of water and soil, increasing the weight
of opium, improving the appearance of quality, the addition of
Indian hair color to opium, and the use of unsuitable methods
and equipment during opium production (Aghababaei et al.
2018; Karrari et al. 2012; Nakhaee and Mehrpour 2018). The
World Health Organization reported the tolerable weekly

Table 2 Element levels of
participants in both addicts and
controls presented as median
(25th–75th percentile)

Elements Addicts Non-addicts Total p-value

Ca 83.5 (72.92–87.68) 88 (82.65–92.95) 84.95 (80–96.05) < 0.001

Cr 7.86 (5.28–10.95) 5.30 (2.85–8.85) 6.66 (4.6–9.0) < 0.001

Mn 6.35 (4.70–8.35) 2.10 (1.80–2.85) 3.56 (2.10–6.35) < 0.001

Fe 1.8 (1.0–2.0) 2.7 (2.4–3.1) 2.1 (1.82–2.70) < 0.001

Cu 9.5 (8.88–10.09) 9.8 (8.58–11.86) 9.61 (8.70–10.61) 0.349

Zn 986 (113.6–180.8) 967.3 (867.7–1068.7) 971.7 (876.1–1065.8) 0.826

Co 1.52 (1.22–2.21) 0.8 (0.50–1.00) 1.1 (0.80–1.54) < 0.001

Ni 1.79 (1.06–2.69) 1.40 (1.11–1.88) 1.50 (1.10–2.20) 0.155

Se 93.3 (83.48–102.91) 83.8 (75.15–94.60) 87.15 (80.61–101.11) 0.004

Cd 3.3 (2.04–4.25) 1.2 (0.90–1.45) 1.7 (1.1–3.29) < 0.001

Ti 1.82 (1.45–2.64) 1.10 (1.00–1.40) 1.41 (1.10–2.03) < 0.001

Hg 2.04 (1.21–3.06) 1.20 (1.07–2.18) 1.54 (1.13–2.51) 0.002

Pb 19.52 (13.6–33.38) 3.50 (2.57–5.16) 8.3 (3.5–19.44) < 0.001

Table 3 The results of
rank-based regression
analysis on the effect of
sex, group, and age of
participants. Numbers
represent corresponding
p-values testing the ef-
fect of each covariate on
elements

Element Sex Group Age

Ca 0.666 <0.001 0.804

Cr 0.142 <0.001 0.396

Mn 0.144 <0.001 0.381

Co 0.428 <0.001 0.103

Ni 0.872 0.071 0.005

Cu 0.812 0.376 0.021

Zn 0.939 0.822 0.740

Se 0.408 0.002 0.379

Cd 0.533 <0.001 0.142

Ti 0.139 <0.001 0.807

Hg 0.642 0.011 0.432

Pb 0.609 <0.001 0.256

Bold face figures represent significant
results

Due to convergence issues, Fe was not
reported
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intake (TWI) of 25 μg/kg (almost 1500 μg for a 60-kg adult)
for lead. Assume that the opium sample contained approxi-
mately 138 μg/gram of Pb (Aghababaei et al. 2018; Kim et al.
2012). A person, who uses opium 3 to 5 gram/day, may con-
sume 414–960 μg of Pb (2898–6720 μg in a week).
Therefore, only through the use of opium, individuals may
be exposed to more than acceptable daily amounts of lead
(Nakhaee and Mehrpour 2019).

In addition to Pb contamination of opium, its transfer to the
human body and heavy metal bioavailability should also be
noted. Some variables, such as the Pb form, nutritional condi-
tion of opium-dependents, route of opium consumption,
length, and method of opium use, can change the occurrence
of Pb accumulation in the body among drug dependents
(Nakhaee and Mehrpour 2019; Farnia et al. 2021).
Alongside opium-induced lead poisoning, some researchers
highlighted the effects of this toxic metal on opiate pharma-
codynamics (Kupnicka et al. 2020). It has been proposed that
lead can impair the functioning of neural pathways associated
with the development of addiction. The lead can alter the
metabolism of dopamine and the expression of dopamine re-
ceptors, and it can also cause neuro-inflammation and en-
hancement of morphine tolerance (Kupnicka et al. 2020).

Cadmium (Cd) is another toxic metal that affects many
biological processes in the body. It has a long half-life (about
20–30 years) and may result in chronic poisoning (Heshmati
et al. 2017; Kupnicka et al. 2020). It has been documented a
high tendency of the opium poppy to accumulate toxic metals,
particularly Cd and Pb, and also semi-metal arsenic (Lachman
et al. 2006). The previous findings suggest the existence of Cd
in different parts of the opium poppy (Aghababaei et al. 2018;

Ivan and Jozef 2011; Knapek et al. 2009; Knapek et al. 2011;
Lachman et al. 2006). The tolerable weekly intake for cadmi-
um has been established at 420 μg/kg (60 μg/day for a person
with 60 kg body weight). The high cadmium contents in opi-
um poppy may result in exceeding TWI (Aghababaei et al.
2018; Knapek et al. 2011). Cadmium exposure may be asso-
ciated with neurotoxicity, nephrotoxicity, osteoporosis, car-
cinogens, genotoxicity, endocrine, and reproductive disorders
(Knapek et al. 2011). Also, its effects on morphine metabo-
lism have been proposed. It can decrease the synthesis of
M3G (morphine-3-glucuronide) in vitro and in vivo studies
(Antonilli et al. 2003; Lawrence et al. 1992). The antagonistic
effects of cadmium on μ-opioid receptors (MORs) and inhib-
itory effects on dopamine release have been proposed. It re-
sults in the malfunctioning of pathways in the limbic system
(Kupnicka et al. 2020; Lafuente et al. 2000; Smith et al. 2002).
The reduced response to morphine has been observed in some
experimental studies (Smith et al. 2002). This result also can
be mediated by the interaction of cadmium with glutamate
receptors, which also plays a significant role in the progress
of dependence (Kupnicka et al. 2020).

Chromium (Cr), particularly hexavalent Cr compound, has
been known as a carcinogen agent based on previous experi-
mental and human studies (Park et al. 2004; Proctor et al.
2014; Thompson et al. 2014). In Aghababaei et al. (2018)
study, the high Cr (447.38 ± 20.27 μg/g) concentrations were
reported in opium samples that were greater than Reference
limits for Cr (VI) (3 μg/kg/day) (Aghababaei et al. 2018).
Experimental studies proposed that Ti dioxide may increase
ROS and inflammatory cytokines. It could cause notable sys-
temic inflammation, dysfunction of endothelium, and lipid

Table 4 Urine trace element levels (μg/L) in both addicts and control groups

Male Female

Element Addicted Non-addicted p-
value

Addicted Non-addicted p-
value

Ca 81.9 (73.1–88.9) 90.2 (83.1–98.4) 0.017 83.70 (72.83–85.58) 90.76 (81.62–100.50) 0.010

Cr 9.02 (5.77–10.87) 6.03 (2.90–8.90) 0.004 8.73 (4.74–11.23) 5.10 (2.85–7.90) 0.009

Mn 6.39 (4.73–7.91) 2.16 (1.60–2.50) <0.001 6.85 (4.98–8.83) 2.38 (1.87–2.90) <0.001

Fe 1.55 (1.00–2.00) 2.69 (2.40–2.90) <0.001 1.55 (1.00–2.00) 2.86 (2.40–3.32) <0.001

Co 1.67 (1.22–2.21) 0.82 (0.60–1.05) <0.001 1.65 (1.22–2.21) 0.78 (0.50–1.00) <0.001

Ni 2.04 (1.19–2.53) 1.47 (1.08–1.68) 0.045 2.04 (0.96–2.92) 1.65 (1.30–2.04) 0.99

Cu 9.77 (8.98–9.98) 9.89 (8.62–11.2) 0.959 9.69 (8.77–10.33) 10.02 (8.58–12.15) 0.285

Zn 979.279895.75–1080.75) 940.39 (866.05–1060.95) 0.451 969.39 (877.00–1033.50) 980.39 (873.60–1086.82) 0.692

Se 97.47 (83.57–104.28) 86.39 (74.90–96.15) 0.006 89.57 (82.48–101.68) 86.24 (79.00–93.32) 0.262

Cd 3.31 (2.04–4.23) 1.28 (0.90–1.45) <0.001 3.56 (2.01–4.21) 1.25 (0.90–1.42) <0.001

Ti 1.92 (1.29–2.44) 1.26 (1.00–1.40) <0.001 2.22 (1.62–2.87) 1.34 (1.03–1.40) <0.001

Hg 2.00 (1.21–2.55) 1.67 (1.11–217) 0.167 2.41 (1.23–3.33) 1.55 (1.03–2.19) 0.003

Pb 27.75 (13.68–36.73) 3.97 (2.45–5.05) <0.001 24.79 (13.71–30.25) 4.06 (2.81–5.14) <0.001
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Kruskal-Wallis, p = 0.56
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Fig. 1 Administration route differences of urinary trace element levels for the 63 opium addicted subjects. Comparisons were made using either
ANOVA or Kruskal-Wallis tests followed by a univariate test between pairwise groups
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metabolism (Huang et al. 2021). The results of Shadman et al.
(2012) study showed that nail Ti concentrations were higher
in opium-dependent subjects compared to the non-dependent
sub j ec t s . The e leva t ed u r ina ry l eve l s o f T i in
opium-dependents can feature the existence of more toxic
elements in the serum and tissues. Nevertheless, this has yet
to be established and further investigated.

Manganese (Mn) and Iron (Fe) are among the essential
elements. Mn is effective in the maintenance of neuron func-
tions, mainly for the energy metabolism of the brain (O’Neal
and Zheng 2015). In excess, however, it is highly toxic to
nerve cells (Lucchini et al. 2007; Williams et al. 2010). Fe is
an essential element for the body. However, it can generate
highly reactive OH radicals, which are considered to be car-
cinogenic at high concentrations. The concentrations of Fe
and Ca were reported to be elevated in nail samples of healthy
participants compared to opium-addicted participants
(Shadman et al. 2012). In the literature, there has been grow-
ing discussion about the interactions of toxic and essential
elements in the human body. Excess content of Zn, Cd, Cu,
and Mn elements can inhibit the absorption of Fe. This phe-
nomenon is occurred by the competition for protein binding
(Aksoy and Sözbilir 2015; Sarafanov et al. 2008) besides, Cd
absorption is also related to Fe intake of diet (Aksoy and
Sözbilir 2015). The lead absorption can be raised due to in-
sufficient dietary intake of calcium and iron (Alinejad et al.
2018; Nakhaee and Mehrpour 2018).

Selenium (Se) is a required element for the development
process. Se exists in the structure of many structural and en-
zymatic proteins. Glutathione peroxidase concentration, an
antioxidant enzyme, in the body is directly associated with
the Se concentration. This enzyme protects the membrane

integrity (Aksoy and Sözbilir 2015; Bou-Resli et al. 2002).
The results of the Aksoy and Sözbilir (2015) study showed
that Se concentration was significantly higher (p < 0.05) in the
kidney of rats fed with diesel derived from opium poppy than
in the control group.

Our results showed that the age of participants was an
influential factor affecting the urinary levels of Ni and Cu.
The decrease/increase in urinary Cu/Ni levels with age is not
well documented in the previous literature. A few studies re-
ported the age effect on the absorption of Cu (August et al.
1989; Johnson et al. 1992). The relationship between plasma
levels of Cu and age was proposed previously with contradic-
tory results (Coudray et al. 2006a; Coudray et al. 2006b;
Uchino et al. 1990). Coudray et al. (2006a) observed a reduc-
tion in absorption of Cu and a significant increase in plasma
Cu concentrations with age in rats (Coudray et al. 2006a).
Another experimental research showed that the plasma con-
centration of Cu increased with age, whereas its urinary ex-
cretion and its concentration in the liver and bone remained
unchanged (Coudray et al. 2006b). The age-related increase in
Cu concentration may be attributed to the inflammatory status
that is generally observed with increasing age (Coudray et al.
2006b).

The results of the current study showed urinary levels of
Ca, Cd, Se, Ti, and Pb elements were found to be all uncor-
related with administration route, daily opium intake, and the
years of opium consumption. There is limited information
about the relationship of different trace elements with reported
variables in opium-dependents. Our results are similar to the
previously published results in which blood lead concentra-
tion was not significantly influenced by the substance type,
route of exposure, duration of opium use, and daily amount of
substance (Ghaemi et al. 2017; Hayatbakhsh et al. 2017;
Salehi et al. 2009; Sazegar and Ebrahimi 2012). In many
cases, the exact daily amount of opium use is not provided
by opium-dependents and a non-significant relationship be-
tween the amounts of consumption with the concentration of
heavy metals may be attributed to unreliable responses.

The absorption of trace elements by the body has
complexity. The transition of metals during inhalation
or ingestion of opium could be a subject in future re-
searches. Some factors can affect the transfer of ele-
ments to the body, for example, complete volatilization
of lead dependents on the temperature applied to it; the
temperature generated on the opium does not completely
release lead vapor or some part of the vapor may run
away without being smoked reducing exposure through
inhalation of opium (Alinejad et al. 2018; Nakhaee and
Mehrpour 2019). For the inhalation route, the bioavail-
ability of lead relates to the airway geometry, airflow
velocity, depth and duration of inhalation, vital capacity,
smoking instruments, and size of particles (Abadin et al.
2019; Nakhaee and Mehrpour 2019).

Table 5 The results of the robust regression analysis. Bold faces
represent significant results

Administration route

Inhale Oral Daily opium intake Usage duration

Co β 0.42 0.38 0.01 −0.01
SE 0.19 0.20 0.04 0.01

p-value 0.032 0.059 0.723 0.661

Cr β −1.273 −1.03 0.53 −0.15
SE 1.01 1.03 0.19 0.07

p-value 0.283 0.420 0.006 0.042

Hg β 0.94 0.23 0.02 0.01

SE 0.33 0.34 0.06 0.02

p-value 0.006 0.501 0.699 0.517

Mn β 0.36 1.88 −0.02 −0.02
SE 0.69 0.70 −0.13 −0.49

p-value 0.594 0.009 0.898 0.626
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Absorption following the oral route may be influenced by
nutritional condition, pH of the gastrointestinal system, and
transit through the digestive system. Opium reduces the mo-
tility of the gastrointestinal system; therefore, constipation
may lead to more absorption of lead into the bloodstream
via prolonged intestinal exposure (Hayatbakhsh et al. 2017;
Nakhaee and Mehrpour 2019). Opium-dependents also most-
ly consumed oral opium in the fasting state to increase the
absorption of opium. It has been suggested that 35% of Pb
can be absorbed in the fasting state, whereas if opium is con-
sumed with food, less amount of Pb (8.2%) is absorbed
(Alinejad et al. 2018; Domeneh et al. 2014). As insufficient
toxicological information is available, it is necessary to assess
the health hazards and bioavailability of inhaled and ingested
opium at the various length of exposure (Nakhaee and
Mehrpour 2019). Our study has some limitations; first, in
the current study, there was no assessment for lead content
of opium due to problems in preparing opium samples
from the participants; this should be investigated in fu-
ture works. Further, we did not have complete informa-
tion of participants’ nutrition habits or the effects of
dietary intake on trace element status.

Conclusion

The results of our study showed an elevated urinary level of
Pb, Mn, and Cd and lowered levels of Fe and Ca in
opium-dependent individuals compared to non-dependents.
Age affected the levels of Ni and Cu only. Opium consump-
tion, regardless of gender, affects the concentration levels of
most elements. The urinary levels of Ca, Cd, Se, Ti, and Pb
elements were found to be all uncorrelated with admiration
route, daily opium intake, and the years of opium consump-
tion; the urinary levels were route-dependent for Co, Hg, and
Mn. It is recommended that screening tests be performed to
determine the level of different metals for each
opium-dependent patient.
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