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Abstract: Cardiovascular diseases, like arrhythmia, as the leading causes of death in the world,
can be automatically diagnosed using an electrocardiogram (ECG). The ECG-based diagnostic has
notably resulted in reducing human errors. The main aim of this study is to increase the accuracy
of arrhythmia diagnosis and classify various types of arrhythmias in individuals (suffering from
cardiovascular diseases) using a novel graph convolutional network (GCN) benefitting from mutual
information (MI) indices extracted from the ECG leads. In this research, for the first time, the
relationships of 12 ECG leads measured using MI as an adjacency matrix were illustrated by the
developed GCN and included in the ECG-based diagnostic method. Cross-validation methods were
applied to select both training and testing groups. The proposed methodology was validated in
practice by applying it to the large ECG database, recently published by Chapman University. The
GCN-MI structure with 15 layers was selected as the best model for the selected database, which
illustrates a very high accuracy in classifying different types of rhythms. The classification indicators
of sensitivity, precision, specificity, and accuracy for classifying heart rhythm type, using GCN-MI,
were computed as 98.45%, 97.89%, 99.85%, and 99.71%, respectively. The results of the present
study and its comparison with other studies showed that considering the MI index to measure the
relationship between cardiac leads has led to the improvement of GCN performance for detecting
and classifying the type of arrhythmias, in comparison to the existing methods. For example, the
above classification indicators for the GCN with the identity adjacency matrix (or GCN-Id) were
reported to be 68.24%, 72.83%, 95.24%, and 92.68%, respectively.

Keywords: heart arrhythmia types; ECG-based diagnostic; graph convolutional networks; CNN;
mutual information

1. Introduction

Cardiovascular diseases are one of the main causes of mortality across the world,
which impose a heavy burden on society [1–3]. Cardiac arrhythmia, which is known as
an abnormal heart rhythm, is considered as a very important category of cardiovascular
disorders [4]. There are different types of arrhythmias with different symptoms such as a
heartbeat that is too slow or fast (sinus bradycardia (SB) and atrial tachycardia (AT)), and
irregular rhythms with missing or distorted sections and intervals (premature ventricular
contraction (AVC)). Atrial fibrillation (AFIB), as the most common and dangerous type of
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arrhythmia, is associated with a significant increase in the risk of severe heart failure and
stroke [5]. Other types of arrhythmias include Sinus Tachycardia (ST), Sinus Irregularity (SI),
Supraventricular Tachycardia (ST), Atrioventricular Node Reentrant Tachycardia (AVNRT),
Atrioventricular Reentrant Tachycardia (AVRT), and Sinus Atrium to Atrial Wandering
Rhythm (SAAWR).

Diagnostic methods of arrhythmia include electrocardiograms, Holter and event mon-
itors, implantable loop recorders, stress tests, echocardiograms (ECGs), and angiography.
Despite the development of many advanced non-invasive measurement technologies in
the last 100 years, the 12-lead ECG has still been widely used worldwide and become
established as the de facto standard for the non-invasive assessment of a wide range of
heart diseases [1]. Accessibility and affordability are the other merits of non-invasive
ECGs [6]. In the 12-lead ECG, 10 electrodes are placed on the surface of the patient’s chest.
The total electrical potential of the heart is then measured from 12 different points and
recorded over a period (usually 10 s) [7].

The type of arrhythmia is diagnosed according to the waveform of the electrocar-
diogram. Correct and quick diagnosis of cardiac arrhythmias is very important for the
prevention and treatment of heart diseases [6]. Misinterpretations of ECGs may lead to
incorrect clinical decisions and adverse outcomes [8]. Interpretation by ECG requires
sufficient expertise and training, and the observer’s knowledge directly influences the
accuracy, so applying automatic diagnosis of arrhythmias using ECG signals, can be useful
in preventing human errors [3,9,10]. Recently, the use of neural network and deep learn-
ing techniques, to analyze and extract features of the ECG data, has received significant
attention [11–13].

Traditional machine learning schemes are heavily influenced by data, which requires
complex preprocessing such as noise cancellation and data normalization. Additionally,
they are vulnerable to over-extraction of unnecessary features, filter design, and additional
trait sorting, and eventually introduce another classification algorithm [14]. A type of
neural network that partially alleviates these problems is the convolutional neural network
(CNN), which automatically detects important features without human supervision [15].
The convolutional neural network (CNN) is a class of artificial neural networks that has
widely been used in various computer vision and machine learning applications and has
received considerable attraction across a variety of medical fields, including radiology,
cancer pathology, diagnosis of cardiovascular disease, etc. The CNN is constructed to
learn spatial hierarchies of features automatically and adaptively [15,16] through back-
propagation by using multiple building blocks, such as convolution layers, pooling layers,
and fully connected layers. The CNN is also a useful tool for solving the problem of
pattern recognition [17], which has wide applications such as image, sound, and signal
analysis, etc.

There are several studies that used convolutional networks with various architectures
for diagnosing cardiac arrhythmias by deeply learning ECG data [4,18–24]. In each of
these studies, the adjusted convolutional network plays an important role to increase the
diagnosis accuracy. The size of data used in these studies was not adequate due to limited
subject records and particularly the ECG beats extracted from the same individuals. This
data scarcity would reduce the generalizability of the constructed models. Furthermore,
since the ECG examines heart function from different angles (leads), these leads have
common and useful information that can be measured and should be included in the
developed deep learning methods reported in [4,18–24]. In other words, it is very important
to consider the structure of 12-leads ECG data, or the relationship between the leads, to
better train the CNNs and thus efficiently learn about the ECG data.

The main aim of this study is to learn the lead structures and use them to increase
accuracy of the diagnosis and classification of cardiac arrhythmias. Therefore, this study
proposed the GCN as an effective deep learning modeling tool, which enables us to include
the lead structures to enhance the accuracy of arrhythmia diagnosis and classify various
types of arrhythmias.
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One of the strengths of the GCNs is their ability to learn complex structures, by
performing convolution operations on graphs instead of pixel images [25], which make
them very effective in modeling graph-structured data [26]. A graph, as a type of data
structure, consists of nodes and connections which can be used when modeling complex
real-world phenomena. Unlike the CNN which should use fixed square kernels when
learning the data, GCNs can use correlations between adjacent nodes and perform a flexible
convolution in randomly irregular areas [27].

In this study, the ECG data collected for each person are considered as a graph
and the heart leads as nodes. The shared information between the common leads data
is measured with the mutual information index (MI) and the connection weights are
provided to the network to improve learning performance. For the data with a complex
dependence structure, the Pearson correlation indices can be used since the electrical
potential records of each lead are represented as a time series and their dependencies are
measured using autocorrelation indices. However, the MI can measure both linear and
nonlinear relationships between two time series and calculate the common information
between them using the entropy function [28]. In this study, the MI index was used to
measure the correlation between leads and then construct a graph between them, which is
required to effectively learn the GCN. The GCN-MI-based model constructed in this study
will be then used to diagnose and classify the type of arrhythmia in individuals suffering
from cardiovascular diseases.

In brief, the main contributions of this study are:

• Representing an individual’s ECG information as a graph.
• Using the MI index to measure the relationship of leads and structure the graph.
• Proposing the GCN-MI, for the first time, to diagnose and classify the type

of arrhythmia.
• Examining a very recent ECG dataset with a considerably large size (at least

10,000 times larger than the datasets used in [4,18–24]).

2. Materials and Methods
2.1. Data

The study used a newly opened research database for 12-lead electrocardiogram
signals under the supervision of Chapman University and the Public Hospital (Medical
School of Zhejiang University in Shaoxing Hospital). The database’s aim is to enable the
scientific community to conduct new research on arrhythmias and other cardiovascular
diseases, and it contains 12 ECGs from 10,646 patients at a 500 Hz sampling rate with
11 normal rhythms and 67 additional cardiovascular diseases. The ECG samples are labeled
by professionals and taken within 10 s for each person, where each ECG sample contains
5000 rows and 12 columns.

Statistically speaking, the number of samples is equal to 10,646 people whose ECG
results are measured as 10,646 12-lead variable time series with 5000 points. In each variable
(lead), the intensity of the electric current is recorded in 5000 turns (every 10 s).

The data included 5956 men and 4690 women, of which 17% had a normal sinus
rhythm and 83% had at least one abnormality (Table 1) [5]. The relative frequency of
rhythm types is shown in this dataset (Figure 1). Figure 2 shows the frequency of each
rhythm by gender.
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Table 1. Rhythm information and basic characteristics of the participants.

Acronym
Name Full Name Frequency, n (%) Age, Mean ± SD Male, n (%)

SB Sinus Bradycardia 3889 (36.53) 58.34 ± 13.95 2481 (58.48%)

SR Sinus Rhythm 1826 (17.15) 54.35 ± 16.33 1024 (56.08%)

AFIB Atrial Fibrillation 1780 (16.72) 73.36 ± 11.14 1041 (58.48%)

ST Sinus Tachycardia 1568 (14.73) 54.57 ± 21.06 799 (50.96%)

AF Atrial Flutter 445 (4.18) 71.07 ± 13.5 257 (57.75%)

SI Sinus Irregularity 399 (3.75) 34.75 ± 23.03 223 (55.89%)

SVT Supraventricular
Tachycardia 587 (5.51) 55.62 ± 18.53 308 (52.47%)

AT Atrial Tachycardia 121 (1.14) 65.72 ± 19.3 64 (52.89%)

AVNRT Atrioventricular Node
Reentrant Tachycardia 16 (0.15) 57.88 ± 17.34 12 (75%)

AVRT Atrioventricular
Reentrant Tachycardia 8 (0.07) 57.5 ± 16.84 5 (62.5%)

SAA Sinus Atrium to Atrial
Wandering Rhythm 7 (0.07) 51.14 ± 31.83 6 (85.71%)

All 10,646 (100) 51.19 ± 18.03 5956 (55.95%)
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2.2. Graph Convolutional Network
2.2.1. Introduction to the GCN

Graph neural network was introduced in 2009, which is based on graph theory and
forms the basis of various types of graph networks. GCNs, as one of the most popular graph
networks, mainly use the combination of the Fourier transform and the Taylor expansion
formula to improve filter performance, and with their excellent performance have been
widely used in the classification of diseases [29]. GCNs are a group of deep neural networks
that perform mathematical operations called convolution on graphs, and their purpose is
to categorize graphs, nodes, or connections [30].

The graph can be represented by G = (V, A), V ∈ RN× f is the matrix of the vertex
signal which displays N nodes that each have ƒ features. A ∈ RN×N indicates the adjacency
matrix that shows edge information and the relationship between nodes. If there is an edge
between node i and node j, A (i, j) indicates the weight of that edge i = 1, 2 . . . N, and
j = 1, 2 . . . N, otherwise A (i, j) = 0.

2.2.2. Convolution Graph

Graph data can briefly display information on edges and vertices, in which, in order to
process and learn this information, a convolutional filtering method must be considered to
filter both edge and vertex information. This is a spatial approach to the graph convolution
method that follows the local neighborhood graph filtering strategy.

The convolution function of a graph is based on matrix polynomials in proximity to
the graph (see also Zhang et al., 2019 [25], for further details).

H = h0 I + h1 A1 + h2 A2 + h3 A3 + . . . + hk Ak (1)

This filter is defined as polynomials of the degree k of the graph adjacency matrix.
A is the proximity matrix and its power represents the number of steps of a given vertex
multiplied by the assumed filter coefficients. Scalar coefficients hi control the participation
of neighbors of one vertex during convolution operation, so the filter matrix is obtained
as H ∈ RN×N. The convolution of vertices V with filter H, defined in (1), is a matrix
multiplication shown below.

Vout = HVin

where Vout, Vin ∈ RN, Vin is the input vertex matrix and Vout is the vertex matrix after the
filter operation. Further details about how this model can be adjusted and how the convo-
lution filter of the selected graph (i.e., H) can be computed are provided in Appendix A.

2.2.3. The Architecture for the Proposed GCN

The first step is preparing the input graph in a way that active and inactive nodes are
equated and considered equal. Additionally, a separate entry will be considered as a label
next to it, and the output of this step will be entered as the graph z0 in the next step.

In the second step, convolution operation will be performed on this graph in several
layers, in a way so that the desired filter will be applied on each node according to its
neighboring edge (Figure 3). This architecture shows a GCN with two layers of convection
and graphs with 12 nodes. In the convolution layers, this position is indicated by red nodes
at each stage. The output of the first layer of convolution z1 is given to the second layer of
the convolution, and z2 is generated as the output of the second layer.
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In the third step, a decision is made about the response variable by linearizing the
created properties and delivering them to a Softmax layer. To do this, first by putting
together all the created graphs from their different permutations from z0 to z2, several
linear vectors will be generated, and each of these vectors is called a property vector.
Figure 3 displays the two steps of the concatenate operation in the third step. The output of
these two stages will be a linear vector that will enter the fully connected neural network at
the last level. Eventually, using this network, known as Softmax, the decision boundary
will be then created.

2.3. Mutual Information

The ECG examines the heart function from different angles (leads), and these leads
have common information (communication) that can be measured. This study measured
this relationship using the MI index and introduced it to the GCN under the adjacency
matrix.

In the following, each lead is assumed as a variable, and the method of calculating MI
between two variables (X, Y) is explained.

Mutual information is a measure of the dependence between two variables which is
the amount of information obtained by observing Y from X. MI comes from the definition of
entropy. In the discrete mode, the mutual information of two variables X and Y is obtained
as follows.

I(X; Y) = ∑
x∈X,y∈Y

Pr[X = x, Y = y]· log
(

Pr[X = x, Y = y]
Pr[X = x]·Pr[Y = y]

)
This can be seen as the Kullback–Leibler divergence measure between the joint distri-

bution Pr[X = x, Y = y] and the product distribution Pr[X = x]. Pr[Y = y]. As a result, the
mutual information can similarly be expressed as the expected value, over X, of the diver-
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gence between the conditional probability Pr[Y = y| X = x] and the marginal probability
Pr[Y = y]:

I(X; Y) = ∑
x∈X

Pr[X = x] ∑
y∈Y

Pr[Y = y|X = x] · log
(

Pr[Y = y|X = x]
Pr[Y = y]

)

The mutual information is always greater than or equal to zero. In fact, if X and Y are
independent, it becomes zero.

For the case that both variables X and Y are continuous, the corresponding relation-
ships can be expressed in terms of integrals [31–33]. These relationships are computed and
stored in the MIN×N matrix (where, N is equal to 12) for 12 ECG leads data considered in
this study, using R software (R Foundation for Statistical Computing, Vienna, Austria).

2.4. Methodology

This study aimed to diagnose and classify the type of heart rhythm using a GCN with
an MI proximity matrix. For this purpose, the newly opened research database of Chapman
University, which has electrocardiogram signals from more than 10,000 people, was used.

The steps required to conduct the proposed method for ECG analysis and classify
heart rhythm type are: (1) data collection; (2) data pre-processing; (3) model building,
training, and tuning; and finally, validation and classification.

The data used in this paper were originally collected and introduced by Zheng et al. [5].
As discussed in Section 2.1, in the data collection phase, first, each subject was exposed to a
12-lead resting ECG for 10 s. The collected data were stored in a GE MUSE ECG system.
Then, a licensed physician labeled the rhythms. Another licensed physician performed
secondary validation. If there was a dispute, a senior physician intervened and made the
final decision. The ECG data and diagnostic information from the GE MUSE system were
then transferred into XML segments and encoded with a specific nomenclature defined
by General Electric (GE). Finally, a conversion tool was used to extract ECG data and
diagnostic information from the XML file and transfer them into CSV format [5].

In the second stage (pre-processing), the noise reduction operation was carried out.
The sources of noise contamination in the ECG data, as reported in [5] and used in this
study, would include power line interference, motion artifacts, electrode contact noise,
baseline wandering, muscle contraction, and random noise. In order to statistically analyze
the ECG data, the noise should be removed from the data.

Zhang et al. [5] proposed and implemented a sequential denoising approach for
removing the noise from the raw ECG data. Since the normal range of the ECG frequency
is from 0.5 to 50 Hz, a Butterworth low pass filter was used to remove the signal above
50 Hz. In order to clear the effects of baseline wandering, a LOESS smoother was then
utilized. Finally, the non-local means technique was used to handle the remaining noise
(see also “§. Data denoising method” and Figures 3–5 presented in [5], for the details of
data pre-processing steps for the dataset analyzed in this study).

The third step, which would be one the main contributions of this study, is to construct
or learn a graph for each ECG by calculating the MI matrix and setting up and training the
GCN network, as demonstrated in Figure 4. The details of this step are discussed below.

In order to construct the graph, a graph was first shown to each expert to show
heart leads and 12 nodes represent 12 heart leads. Considering that each lead contains
5000 samples of the heart’s electrical potential, the feature matrix measures 12 × 5000. The
relationship of the leads was calculated with the MI matrix and used as the adjacency
matrix (12 × 12) in the GCN (Figure 4).
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GCN-MI-5, GCN-MI-10, and GCN-MI-15 using various k-fold CVs, are illustrated in subfigures (a–d),
respectively.

There are 11 rhythms in the data set, but the number of samples for 4 types of these
rhythms is less than 2%, AT (n = 121; 1.14%), AVNRT (n = 16; 0.15%), AVRT (n = 8; 0.07%),
and SAA (n = 7; 0.07%). Therefore, information about the other 7 rhythms was used for
training and testing (10,494 people). These 7 rhythms included AF, AFIB, SI, SB, SR, ST,
and SVT. In the first stage, the appropriate GCN-MI was selected, and this model was
trained with 5, 10, and 15 layers. For this purpose, cross-validation methods with k = 2,
3, 4, 5-fold and leave-one-out cross-validation methods were used. These CV methods



Int. J. Environ. Res. Public Health 2022, 19, 10707 9 of 17

were also used to select the training and testing groups of the GCN-MI networks with 5, 10,
and 15 different layers. The performance of these networks was assessed using standard
evaluation criteria, such as accuracy, specificity, precision, and sensitivity, in the testing set.
To select the most appropriate accuracy network, three networks were compared in pairs
by t-independent test. A network was then selected, and all data were categorized by it.
To evaluate this classification, a confusion matrix was prepared, and evaluation criteria
were estimated.

Finally, in order to show the novelty of this article in improving the performance of
the GCN-MI network in the diagnosis of arrhythmias and classifying different types of
rhythms, the results were compared with those in which no structure between cardiac
leads was considered. In the unstructured state, the identity matrix was considered as the
adjacency matrix. The results of this study were also compared with other studies that
have used different methods to diagnose arrhythmias in this dataset.

Considering true positive (TP), true negative (TN), false positive (FP), and false nega-
tive (FN), the accuracy, sensitivity, specificity, and precision, as performance criteria, of the
proposed CGN-based classification method, are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

Precision =
TP

TP + FP

3. Experimental Results

The MI matrix was calculated using R software to measure the relationship of
12 heart leads for all individuals and was introduced as a proximity matrix in the GCN
using Python software. GCN-MI-10 and GCN-MI-15 were formed to find an optimal net-
work of GCN-MI-5 (convolution layers) and their performance was also evaluated under
leave-one-out cross-validation with k = 2, 3, 4, 5. Accuracy, specificity, sensitivity, and
precision indices were used to assess the performance of these networks in a test-set with
cross-validation methods (Table 2). From Figure 5, it can be observed that the graph of
GCN-MI-15 evaluation indicators is always higher than the other two networks. However,
the t-independent test was used to assess the significance of this difference. The results,
presented in Table 2 and Figure 5, showed that the accuracy of the GCN-MI-15 network for
leave-one-out and for the cross-validation method with k = 2, 3, 4, 5 is significantly higher
than the accuracy of GCN-MI-5 and GCN-MI-10 networks.

A statistical test was used to select the appropriate number of folds for cross-validation.
The result of the t-independent test with 95% confidence showed that the accuracy of
fold = 3 and 4 was higher than other selections.

However, it is obvious that adding more layers will help us to extract more features,
but we should be aware of the possible overfitting by adding more layers and compu-
tational layers. Based on the above benchmark study between the accuracy and other
predictive performance values of the GCN-MI with different layers, and negligible in-
creased computational cost, the GCN-MI with 15 intermediate layers was thus selected and
configured using cross-validation method and with 4 folds. In the selected spatial GCN
model, for each convolution layer, as explained in Section 2.2.2, the convolution operation
is performed based on matrix polynomials in proximity to the graph. The output of each
layer of the convolution is given to the next layer. The parameters of the selected GCN
network with 15 convolution layers and the MI adjacency matrix are shown in Table 3.
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Table 2. The performance values for GCN-MI-5, GCN-MI-10, and GCN-MI-15 in the testing set with
the k-fold cross-validation method.

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)
GCN-MI GCN-MI GCN-MI GCN-MI

5
Layer

10
Layer

15
Layer

5
Layer

10
Layer

15
Layer

5
Layer

10
Layer

15
Layer

5
Layer

10
Layer

15
Layer

Leave-
one-
out

96.57 96.82 99.39 95.76 95.32 99.22 98.78 99.66 100 95.08 97.68 99.94

k = 2 98.53 97.40 99.63 99.81 96.03 100 98.92 99.82 100 97.69 98.85 100
k = 3 96.93 98.56 99.83 95.40 96.06 99.15 97.70 100 100 97.09 98.50 99.98
k = 4 96.83 96.39 99.83 96.12 96.30 99.76 99.94 99.79 100 97.53 94.75 99.11
k = 5 96.96 96.63 99.24 95.34 97.87 98.52 99.46 99.39 100 95.55 97.97 98.87

Table 3. The parameter values of the fitted GCN-MI network with 15 layers.

Parameter Value

Learning Rate 0.02
Epochs 600

Hidden layers 15
Dropout 0.2

Weight Decay 10,000
Early Stopping 10

The function of the middle layers of this network was ReLU and the subordinate of
the last layer was Softmax. The learning curve shows that the training accuracy is at a high
level and the model fits are good. It also shows that after 600 epochs, the cross-validation
accuracy converged to the training accuracy (Figure 6).
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In the next step, using the tuned network, the type of rhythm of all individuals was
identified and classified. The results showed that 100% of people classified by the selected
network in SB were correctly identified. The results showed that the accuracy of the GCN-
MI-15 network in the testing set with the cross-validation method was higher than other
networks. Therefore, in the end, all data were classified by the GCN-MI network. The
results showed that 99.6%, 98.1%, 99.5%, 95.5%, 92.5%, and 100% of people who were
classified in SR, AFIB, ST, AF, SI, and SVT, respectively, were correctly diagnosed, and
for the rest another type of arrhythmia was given. The confusion matrix shows how this
classification works. The network with the identity matrix gave poor results (Figure 7).
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In SB detection, this network had sensitivity, precision, specificity, and accuracy equal
to 99.35%, 100%, 100%, and 99.76%, respectively, and these values for SR were equal to
98.79%, 99.61%, 99.92%, and 99.72%. The classification performance criteria result of other
classes can be seen in Table 4. The results show that the sensitivity, precision, specificity, and
accuracy of the GCN network with the proposed structure (MI) were considerably higher
than the GCN network with the identity structure. The results also show that the overall
values of sensitivity, precision, specificity, and accuracy of GCN-MI in diagnosing the type
of arrhythmia are equal to 98.45%, 97.89%, 99.85%, and 99.71%, respectively. This network
had the highest sensitivity (99.73%) for ST rhythm classification and the highest accuracy
of 99.95% for SVT classification. Additionally, the highest precision and specificity were
related to the classification of SB and SVT rhythms (100%). In contrast, the overall values
of sensitivity, precision, specificity, and accuracy of GCN-Id are equal to 68.24%, 72.83%,
95.24%, and 92.68, respectively. The GCN-Id network had the highest sensitivity (90.21%)
and precision (84.36%) for SB rhythm classification and the highest accuracy of 94.56 for
SVT classification. Furthermore, the highest specificity was related to the classification of SI
rhythms (98.05%) (Table 4).

An independent t-test was used to compare the accuracy of two GCN-MI models with
the mean and standard deviation equal to 0.9971 ± 0.3210 and GCN-Id with the mean
and standard deviation equal to 0.9268 ± 0.4774. The results of this test showed that the
accuracy of the GCN-MI model in detecting and classifying the seven types of arrhythmias
mentioned is significantly (p-value < 0.001) higher than the GCN-Id method.

The comparison of the results of the present study with other studies showed that the
accuracy of the proposed method (99.71%) was higher than that of the DNN (92.24%), CNN
Trees (97.60%), Meta CNN Trees (98.29%), Single Classifier (92.89%), 1-D CNN (94.01%),
RNN (96.21%), XGBoost (89.40%), Teacher Model (98.96%), Student Model (98.13%), and
GCN-MI (99.71%) models in arrhythmic diagnosis (Figure 8).
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Table 4. The performance values for all records separately for each class using GCN-MI and GCN-Id.

Sensitivity Precision Specificity Accuracy

SB
GCN-MI 99.35 100 100 99.76

GCN-Id 90.21 84.36 89.02 89.49

SR
GCN-MI 98.79 99.61 99.92 99.72

GCN-Id 81.43 79.73 94.80 92.12

AFIB
GCN-MI 98.88 98.10 99.61 99.48

GCN-Id 78.14 72.92 93.48 90.67

ST
GCN-MI 99.43 99.55 99.92 99.85

GCN-Id 83.88 79.65 95.62 93.62

AF
GCN-MI 94.83 95.47 99.80 99.59

GCN-Id 42.88 64.27 98.03 93.83

SI
GCN-MI 98.75 92.49 99.68 99.65

GCN-Id) 42.80 60.40 98.05 94.47

SVT
GCN-MI 99.15 100 100 99.95

GCN-Id 58.34 68.48 97.68 94.56

Overall
GCN-MI 98.45 97.89 99.85 99.71

GCN-Id 68.24 72.83 95.24 92.68
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4. Discussion

This research aimed to distinguish and categorize different types of heart rhythms.
To date, neither ECGs as a graph nor GCNs have been used directly to detect and classify
cardiac arrhythmias, and this study is the first to consider the relationship of cardiac leads
to the MI matrix and provide it to the network under the adjacency matrix. In this way,
the new large ECG database of Chapman University was used. Our study recommended
a 15-layer GCN-MI to detect and classify seven types of rhythms based on a 12-lead
ECG involving more than 10,000 individuals. Comparing the evaluation indicators of
the proposed network (GCN-MI) with GCN-Id showed that considering the MI index to
measure the relationship between cardiac leads led to an improvement in GCN performance.
The accuracy of the proposal model was 99.71%, while the accuracy of the GCN network
with the identity structure was 92.68%. Many researchers, applying different sources and



Int. J. Environ. Res. Public Health 2022, 19, 10707 13 of 17

different approaches, have tried to create an arrhythmia detection system using a deep
learning architecture.

In a similar work conducted by Zheng Jiang et al., two CNN networks and then the
GCN were used to diagnose multiple cardiac disorders. The developed GCN, in this work,
is used to examine the relationship between arrhythmia classes when there is more than
one cardiac disorder during ECG signal collection, and binary cross-entropy loss is used
for correlation between labels. As it is evident, the inter-dependency of the heart leads
is neglected in this study. This could be another strength of our proposed method where
each ECG is defined as a graph and directly expressed by the GCN (with inter-dependency
relationships between the leads determined using MI structure) to detect and classify
arrhythmia type [34].

Shaker et al. also recommended the Generative Adversarial Networks to distinguish
and classify rhythm types based on 15 different classes of MIT-BIH arrhythmic datasets, in
which the overall accuracy was only 98.30% [35], in comparison to 99.71% of the proposed
method in this paper.

Yao et al., in 2020, introduced an ATI-CNN to detect arrhythmic type based on a
multi-channel ECG signal, which included 6877 12-lead ECG records, and classified a total
of 8 types of arrhythmias. This study showed that ATI-CNN reached an overall accuracy of
81.2%. Comparing to a classic 16-layer CNN called VGG-net, the accuracy increased by an
average of 7.7%, and in the detection of paroxysmal arrhythmias by 26.8% [22]. In 2020,
Zhao and Ban proposed a way to combine a CNN and an extreme learning machine with
the aim of automatically identifying and classifying ECG signals. Data from the MIT-BIH
database was used in this study, which contained 48 ECG data, and resulted in an accuracy
rate of 97.50% [24].

In 2019, Gao et al., in order to accurately detect the ECG, recommended the LSTM
network with FL using the data in the MIT-BIH arrhythmia database and the accuracy
was 99.26% [36]. Hannun et al., in 2019, developed the DNN to classify 12 rhythm classes
applying 91,232 single-lead ECGs from 53,877 patients, with an AUC (below rock curve
level) of 0.97 [37]. In 2019, Oh et al. suggested a modified U-net for automatically detecting
and encoding five types of ECG arrhythmias. They used the MIT-BIH arrhythmia database,
and the accuracy of their recommendation system was 97.32% [38]. Li et al., in 2019,
introduced a residual network (ResNet) to identify five different types of heart rhythm
using a 2-lead ECG, with an accuracy of 99.38%. The data were obtained from the MIT-
BIH arrhythmia database [39]. Yildirim et al., in 2018, designed a 16-layer 1D-CNN to
determine 17 classes of heart rhythm, using the MIT-BIH arrhythmia database, with a
network accuracy of 91.33% [40].

In 2018, utilizing the ECGs of 47 individuals from the MIT-BIH arrhythmia database,
Xu et al. suggested a DNN to classify five classes of arrhythmias, with an accuracy of
93.1% [41]. Acharya et al., in 2017, using a CNN network with nine layers, with an accuracy
of 94.03%, categorized the arrhythmic type into five types of arrhythmias. The data were
related to the MIT-BIH arrhythmia database [42].

Several studies have proposed models for the diagnosis of arrhythmias using Chap-
man data also used in the present study. The accuracy of DNN [43], CNN Trees [44], Meta
CNN Trees [45], Single Classifier [46], 1-D CNN [47], RNN [48], XGBoost [49], Teacher and
Student [50] models was 92.24%, 97.60%, 98.29%, 92.89%, 94.01%, 96.21%, 89.40%, 98.96%,
and 98.13%, respectively. While our proposed GCN-MI had a higher accuracy (99.71%) this
may be due to the consideration of the structure of leads.

These studies used a limited number of subject records besides using many extracted
beats from the same people. This situation can reduce the generalizability of the models,
but our study used more than 10,000 people and each ECG record was obtained exclusively
from one person. This set of data is available to the public, and one of its advantages is
that our results are comparable to future studies on this database. None of the previous
studies have considered the relationship of leads. Statistically, there is a type of linear or



Int. J. Environ. Res. Public Health 2022, 19, 10707 14 of 17

nonlinear correlation amongst heart leads, and calculating and using it for network training,
as additional information, can be useful to categorize different types of heart rhythms.

In our study, to use this additional information, we configured the GCN and calculated
the relationship amongst cardiac leads using the MI matrix and provided it to the network
as the adjacency matrix for the first time. Our network accuracy is high (99.71%) and this
model has a good generalization ability for detecting ECG arrhythmias. Table 5 indicates
the results of these studies.

Table 5. Performance comparison of the proposed method with other state-of-the-art methods.

Refs. Study Dataset Num.
of Subjects Year Method Classes Performance

[34] Jiang et al. PhysioNet/CinC
Challenge 2020 512 2022 CNN+GCN 9 F-Score = 0.603

[35] Shaker et al. MIT-BIH 47 2020 GAN 15 Acc = 98.30%

[22] Yao et al. - - 2020 ATI-CNN 8 Acc = 81.2%

[24] Zhao & Tan MIT-BIH 47 2020 CNN+ELM 4 Acc = 97.5%

[36] Gao et al. MIT-BIH 47 2019 LSTM, FL 8 Acc = 99.26%

[37] Hannun et al. - 53549 2019 DNN 12 AUC = 97%

[38] Oh et al. MIT-BIH 47 2019 Modified
U-net 5 Acc = 97.32%

[39] Li et al. MIT-BIH 47 2019 ResNet 5 Acc = 99.38%

[40] Yildirim et al. MIT-BIH 47 2018 CNN 17 Acc = 91.33%

[41] Xu et al. MIT-BIH 47 2018 DNN 5 Acc = 93.1%

[42] Acharya et al. MIT-BIH 47 2017 CNN 5 Acc = 94.03%

[43] Yildirim et al. Chapman 10,588
2020 DNN

4 Acc = 96.13%
10,436 7 Acc = 92.24%

[44] Meqdad et al. Chapman 10,646 2022 CNN Trees 7 Acc = 97.60%

[45] Meqdad et al. Chapman 10,646 2022 Meta CNN
Trees 7 Acc = 98.29%

[46] Mehari et al. Chapman 10,646 2022 Single
Classifier 7 Acc = 92.89%

[47] Rahul et al. Chapman 10,646 2022 1-D CNN 7 Acc = 94.01%

[48] Kang et al. Chapman 10,646 2022 RNN 7 Acc = 96.21%

[49] Domazetoski
et al. Chapman 10,646 2022 XGBoost - Acc = 89.40%

[50] Sepahvand
et al.

Chapman 10,646 2022

Teacher
model 7 Acc = 98.96%

Student
model 7 Acc = 98.13%

Proposed Chapman 10,494 2022 GCN-MI 7 Acc = 99.71%

5. Conclusions

Enhancing accuracy of the diagnosis tools for cardiac arrhythmias is very important to
prevent the exacerbation of disease and possibly death. In recent years, the deep learning
algorithms (with various network structures) have widely been used in the automatic
detection of various arrhythmia types. In order to achieve high accuracy, constructing a
network structure, which includes relationship between the ECG leads, plays an important
role. This study provides a novel way to consider the structure between ECG data by
constructing an efficient GCN model augmented with the adjacent matrix of MI. It was
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then illustrated that the constructed GCN-MI is very effective in diagnosing and classifying
different types of arrhythmias and is significantly more accurate than the existing methods.
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Appendix A. Computation of the Convolution Filter in the GCN

The model presented for the convolution graph in Section 2.2.2 can be adjusted in three
stages. First, the exponentiation of proximity matrix, A is prevented and the proximity
polynomial in Equation (1) is simplified in the following linear form:

H ≈ h0 + h1 A (A1)

This would be useful since a large number of filters can efficiently estimate the receiv-
ing area of a larger filter.

In the next step, we then need to construct the proximity tensor A. This tensor contains
several adjacency matrices Ae as cuts of the adjacency tensor. Each cut encodes a specific
edge feature. As a result, the linear filter matrix from (A1) can then be written as

H = h0 I + h1 A1 + h2 A2 + . . . + hL AL =
L

∑
e=0

he Ae. (A2)

The adjacency matrices will be used to encode the edge features, each encodes one
feature. In this study, the connection between the vertices (leads) was without direction,
so the same filter was used for all adjacent vertices. Considering that this filter is used to
encode the vertex feature, Equation (A2) can be modified as follows for the vertex feature c.

Hc =
L

∑
e=0

hc
e Ae,

where scalar coefficients hc
e control the participation of neighbors of vertex c during the

convolution operation associated with adjacency matrices Ae.
Therefore, the convolution of V vertices with an H filter can be written as follows:

Vout = ∑
c

HcVc
in + b,

where Vc
in is a column of Vin containing only the feature of vertex c. We also add a bias

b ∈ R. In this way, graph convolution is defined on a graph with several vertex features
and edge features (see also Zhang et al., 2019 [25], for further details about computing the
convolution filter for the GCN model).

https://figshare.com/collections/ChapmanECG/4560497/2
https://figshare.com/collections/ChapmanECG/4560497/2
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