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cognitive impairment no dementia (PSCIND) and post-
stroke dementia (PSD) [3].
According to the Diagnostic and Statistical Manual

of Mental Disorders, Fifth Edition (DSM-5), cogni-
tive impairment can be classified into two categories
based on severity: mild cognitive impairment (MCI) and
dementia. Additionally, research has found that MCI
is reversible and may progress back to a normal cogni-
tive state [4]. About 20–30% of PSCI patients will dete-
riorate and develop into PSD [5, 6]. us, early diagnosis
and treatment of PSCI and PSD contribute to improving
the prognosis of stroke patients, alleviating societal and
economic burdens. Numerous studies have reported
many independent risk factors for PSCI and PSD related
to age, hypertension, high cholesterol, diabetes, smok-
ing, atrial fibrillation [7–9]. Stroke history and vascular
risk factors (such as high blood pressure, obesity, and
smoking) may accelerate the development of PSCI and
PSD [10]. us, clinicians face challenges in integrating
multiple factors for the early diagnosis of PSCI and PSD.
e CHANGE and SIGNAL2 scales have demonstrated
accuracy in predicting PSCI, with area under the curve
(AUC) of receiver operating characteristic curve (ROC)
ranging from 0.740 to 0.829 [11, 12]. Due to the complex-
ity of the pathophysiology and multiple contributing fac-
tors associated with PSCI, conventional scoring systems
with limited variables may not optimally predict PSCI.
Researchers have applied cognitive impairment risk pre-
diction models to PSCI, but the predictive performance
has not been ideal [13].
Machine learning (ML) algorithms are adaptable to

various types and sizes of data and have garnered sig-
nificant attention in the development of patient-centered
prediction/prognosis models. ese models can help
optimize treatment plans and facilitate the monitoring
and management of health conditions. Recently, ML has
demonstrated immense potential in enhancing the speed
and accuracy of stroke imaging assessments [14, 15].
Consequently, some researchers are pivoting their focus
towards ML, aiming to develop a more accurate predic-
tive model for PSCI [16–18]. In this context, we con-
ducted a retrospective study focusing on a more severe
form of cognitive decline after stroke, PSD, with the goal
of developing and testing the applicability of ML models
in predicting PSD.

Materials and methods
Data source
For this retrospective cohort study, we selected 545
stroke inpatients from the rehabilitation department
and geriatrics department of Shaoxing People’s Hospital,
spanning from January 2019 to August 2021.

Inclusion Criteria: (1) admitted for stroke between Jan-
uary 2019 and August 2021; (2) aged 18 years and above;
(3) signed an informed consent form.
Exclusion Criteria: (1) Pre-existing cognitive impair-

ment before the current stroke; (2) Presence of other
diseases severely affecting cognitive function, such as
anxiety, depression, or brain tumors.

Clinical variables
A total of 46 variables were collected, including demo-
graphic data, vascular risk factors, and examination
findings. Demographic data included variables such as
gender, age, occupation, and education level, and Body
mass index (BMI). e vascular risk factors recorded
were smoking status, alcohol consumption, hypertension,
hyperlipidemia, and any history of stroke. Clinical exami-
nation findings compiled for analysis included the type of
stroke, fibrinogen levels, high-sensitivity C-reactive pro-
tein (CRP), blood uric acid levels, blood homocysteine
levels (Hcy), and specifics regarding the stroke’s side and
location.

Model construction and verification
e initial sample (n=545) underwent multicollinearity
assessment to ensure the stability of subsequent analyses.
Based on Spearman correlation analysis, we identified
and removed individual significant and highly correlated
features to mitigate the effects of multicollinearity. Addi-
tionally, features with over 20% missing values (BMI)
were discarded, and 6 samples with extreme deviations
and missing data were excluded. 539 patients and 45 vari-
ables were included in the study. Supplementary Table 1
shows the detailed information of all variables. e con-
tinuous variables in the remaining sample were standard-
ized through Z-score normalization. Finally, the data of
539 patients were randomly divided into a training set
and a test set in a 3:1 ratio.
In this study, we preselected features for the training set

using the Boruta algorithm, a feature selection method
based on the random forest algorithm [19]. e Boruta
algorithm is a highly popular and robust feature selec-
tion method that helps in retaining only the most statisti-
cally significant variables [20], thereby making a practical
contribution to our model. It identifies crucial features
by creating shadow features (randomized copies of fea-
tures) and evaluating the importance of original features
using the random forest algorithm. Subsequently, we
input these preselected features into 8 different ML mod-
els: logistic regression (LR), elastic net (EN), k-nearest
neighbors (KNN), decision tree (DT), extreme gradient
boosting (XGB), support vector machine (SVM), ran-
dom forest (RF), and multilayer perceptron (MLP). For
each model, we selected a set of hyperparameters that
maximized the AUC of ROC on the training set using
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a Bayesian optimizer, ensuring optimal performance
and effective prediction and comparison on the test set.
Detailed hyperparameters are available in the supple-
mentary material. All models were subjected to five-fold
cross-validation to ensure robustness and reliability. We
plotted the ROC of each model on the test set to evaluate
their predictive performance and decision curves analy-
sis (DCA) and clinical impact curve (CIC) to assess their
clinical utility.
Comparing models, we selected the best model based

on AUC values and created a Shapley Additive exPlana-
tions (SHAP) explainer to calculate SHAP values, which
indicate the contribution of each feature to the prediction
outcome. We plotted a SHAP summary chart to illustrate
the impact of model features.

Statistical analysis
R software (version 4.3.0, https://www.R-project.org/)
was used to support grouping and data statistical analy-
sis. Continuous variables were presented as median with
interquartile range (Mean, IQR), while categorical data
were represented by numerical values and correspond-
ing percentages (n, %). We used t-test or the Wilcoxon
rank-sum non-parametric test for continuous variables,
and chi-square test for categorical variables to compare
the demographic and clinical characteristics between the
PSD group and the non-PSD group.

Results
Characteristics of patients
Among the 539 stroke patients included in this analysis,
194 did not develop PSD, while 345 did. e baseline
characteristics of the PSD and no PSD groups are shown
in Table 1. ere were significant differences in age and
High-sensitive CRP between the two groups (P<0.001).

Model building and verification
rough Spearman correlation analysis, we removed 6
individual significant and highly correlated features. Fea-
ture selection was then conducted using the Boruta algo-
rithm, identifying 9 acceptable variables: brain stem, age,
temporal lobe, right lesion, cerebral hemorrhage, high-
sensitive CRP, subarachnoid space, outer capsule, and
Island leaves (Fig. 1). Using these 9 variables, we devel-
oped 8 ML models to predict the risk of PSD in stroke
patients. Fig. 2 displays the ROC of all models, with their
predictive discrimination represented by the AUC. e
XGB model had the highest AUC (0.7287), followed by
RF (0.7285), KNN (0.7113), MLP (0.7082), EN (0.7033),
LR (0.7022), DT (0.6502), and SVM (0.6098). e clini-
cal applicability of all models was further assessed using
DCA and CIC. DCA was utilized to evaluate the clini-
cal benefit of the predictive models. e threshold range
for the XGB model was approximately 0-0.87, slightly

narrower than those for the EN, LR, and KNN models.
Additionally, the DCA overlapped partially or entirely
with other models across most threshold ranges, indi-
cating no significant difference in net benefits. However,
in the threshold range of approximately 0.76–0.8, the
net benefit of the XGB model was significantly higher
than that of other models (Fig. 3). Supplementary Fig. 1
shows the CIC for all models, assessing the efficiency of
the models. When the threshold was greater than 0.7,
the high-risk PSD group identified by the XGB predic-
tion model closely matched the actual PSD occurrences,
confirming the model’s high clinical efficiency. Addition-
ally, we calculated the accuracy, sensitivity, and specific-
ity for all models (Table 2). e XGB model achieved the
highest accuracy with a value of 0.72939. Although the
sensitivity and specificity of the XGB model were not the
highest, its overall performance is better when these met-
rics are considered comprehensively.

Feature importance
To visually present the selected variables, we analyzed
the best predictive model, XGB, using the SHAP package
to show the positive and negative impact of each feature
on a given sample. Fig. 4A displays the absolute values of
the average SHAP values for different features. Age had
the most significant impact on model output, followed
by high-sensitive CRP, right lesion, temporal lobe, cere-
bral hemorrhage, brain stem, undergraduate, bilateral
lesions, and subarachnoid space. Fig. 4B provides a more
detailed view of the impact of each feature on individual
predictions.

Discussion
In this retrospective cohort study, we selected 9 accept-
able features using the Boruta algorithm and developed 8
ML models to predict the risk of PSD in stroke patients.
Among the 8 models, the XGB model showed the high-
est AUC and good clinical applicability. Furthermore, the
most impactful features for predicting PSD, in descend-
ing order of importance, were age, high-sensitive CRP,
right lesion, temporal lobe, and cerebral hemorrhage.
Increasingly, research acknowledges that the risk fac-

tors and progression of post-stroke cognitive impairment
and dementia (PSCID) are determined by a multitude
of factors, including age, comorbidities, type of stroke
(ischemic and hemorrhagic), education level, and the
location and size of the stroke [3, 21]. Yan et al.‘s inves-
tigation, which developed 8 model for predicting the
occurrence of MCI after stroke, revealed that the LR
model achieved the highest AUC of 0.8595. It also exhib-
ited high accuracy, sensitivity, and specificity, at 0.770,
0.778, and 0.765 respectively [18]. However, owing to the
small sample size (n=199), the model may not be suffi-
ciently effective. erefore, more patients were included
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Table 1 Clinical characteristics of patients (n = 539)
Variables Dementia

NO (n = 194) Yes (n = 345) P-vaule
Age (year) 66 (56, 72) 70 (60, 77) < 0.001
Gender 0.052
Female 60 (30.93%) 137 (39.71%)
Male 134 (69.07%) 208 (60.29%)
Occupation
Farmer 66 (34.02%) 133 (38.55%) 0.341
Worker 8 (4.12%) 11 (3.19%) 0.748
Sta 53 (27.32%) 75 (21.74%) 0.175
Merchant 11 (5.67%) 24 (6.96%) 0.689
Retire 56 (28.87%) 102 (29.57%) 0.942
Education
Elementary school or below 74 (38.14%) 127 (36.81%) 0.83
Junior high school 57 (29.38%) 87 (25.22%) 0.344
High school 14 (7.22%) 35 (10.14%) 0.328
Undergraduate 17 (8.76%) 17 (4.93%) 0.116
Master degree or above 0 (0%) 1 (0.29%) 1
Smoking 54 (27.84%) 86 (24.93%) 0.524
Drinking 54 (27.84%) 91 (26.38%) 0.791
Hypertension 149 (76.8%) 272 (78.84%) 0.66
Hyperlipidemia 68 (35.05%) 127 (36.81%) 0.753
Diabetes 72 (37.11%) 136 (39.42%) 0.663
Previous Stroke 24 (12.37%) 49 (14.2%) 0.642
Accompanied by Depression 25 (12.89%) 46 (13.33%) 0.988
Cerebral hemorrhage 130 (67.01%) 210 (60.87%) 0.185
Cerebral infarction 54 (27.84%) 135 (39.13%) 0.185
Lesion
Left 98 (52.06%) 121 (35.07%) < 0.001
Right 71 (36.6%) 167 (48.41%) 0.01
Bilateral 25 (12.89%) 57 (16.52%) 0.316
Stroke Site
Basal ganglia 100 (51.55%) 194 (56.23%) 0.338
Frontal lobe 26 (13.4%) 98 (28.41%) < 0.001
Parietal lobe 29 (14.95%) 81 (23.48%) 0.025
Thalamus 12 (6.19%) 27 (7.83%) 0.594
Lateral ventricle 58 (29.9%) 68 (19.71%) 0.01
Subarachnoid space 0 (0%) 8 (2.32%) 0.077
Occipital lobe 8 (4.12%) 31 (8.99%) 0.055
Brain stem 25 (12.89%) 13 (3.77%) < 0.001
Semi-oval area 17 (8.76%) 31 (8.99%) 1
Outer capsule 0 (0%) 6 (1.74%) 0.156
Inner capsule 2 (1.03%) 9 (2.61%) 0.354
Cerebellum 13 (6.7%) 15 (4.35%) 0.327
Island leaves 1 (0.52%) 13 (3.77%) 0.046
Radiation crown 2 (1.03%) 2 (0.58%) 0.95
Corpus callosum 3 (1.55%) 6 (1.74%) 1
Temporal lobe 28 (14.43%) 97 (28.12%) < 0.001
Fibrinogen (g/L) 3.35 (2.88, 3.95) 3.35 (2.88, 4.16) 0.452
High-sensitive CRP (mg/L) 3 (0.95, 8.94) 4.99 (1.63, 17.46) < 0.001
Blood uric acid (µmol/L) 291.35 (222.58, 345.48) 284.4 (221.1, 346.1) 0.634
Blood homocysteine (µmol/L) 11.17 (9.41, 13.82) 11.17 (9.01, 13.27) 0.220
Notes: Continuous variables were presented as median with interquartile range (Mean, IQR), while categorical data were represented by numerical values and 
corresponding percentages (n, %)
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in this study to provide better confidence and stability.
Given the complex and varied factors influencing PSCID,
prediction in clinical settings is challenging, with lower
accuracy compared to post-stroke functional outcomes.
ML methods are often more suitable when dealing with
complex influencing factors. Stroke can be categorized
into hemorrhagic strokes (HS) and ischemic strokes (IS),
with IS constituting a significantly higher proportion of
all strokes, approximately 87% according to data from
Johns Hopkins Medical Center [22]. us, research focus
and resources are more inclined towards IS. Our study
encompassed patients with both types of strokes, offer-
ing a more comprehensive perspective for understand-
ing and predicting PSD. e studies of Lee et al. (n=951)
and Ji et al. (n=397) developed a variety of ML models to

predict the risk of PSCI in patients with acute IS (AIS).
ey found that the XGB and Gaussian Naive Bayes
(GNB) models had the best discrimination, with AUC of
0.7919 and 0.925, respectively. Additionally, these models
also surpassed the LR model in other metrics, including
accuracy and F1 score [16, 17]. In our study, XGB also
showed better overall performance for PSD prediction.
Although PSCI and PSD may clinically overlap, they dif-
fer in definition, severity, treatment strategies, and man-
agement. Dementia represents a more severe clinical
outcome, significantly impacting patients’ daily lives and
independence. erefore, by concentrating on PSD as an
outcome, effectively predicting its occurrence can facili-
tate the implementation of prevention and intervention
measures at an earlier stage.

Fig. 1 Feature selection based on Boruta algorithm. Green represents acceptable variables
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Despite the SIGNAL2 risk score and CHANGE risk
score models exhibiting good discriminative ability in
predicting PSCI, both models use Mini-Mental Status
Examination (MMSE)≤25 or Montreal Cognitive Assess-
ment (MOCA)≤22 as cut-off raw scores and incorporate
age and education level as variables with high weight.
However, since MMSE and MOCA scores are highly
dependent on age and education level [11, 12].erefore,
regardless of the clinical characteristics of the patient,
it may have little effect on the predictive outcome. In
our study, the ML models we constructed can continu-
ally learn and adapt to new data, improving their accu-
racy over time, unlike the static SIGNAL2 and CHANGE
models. By applying the Boruta algorithm, we identified
the most important features in the dataset for the predic-
tive models. is approach, unconstrained by data type,
allows for comprehensive feature selection, eliminat-
ing irrelevant features to reduce the risk of overfitting,
thereby enhancing the model’s accuracy and interpret-
ability. We incorporated variables in the green zone into

the 8 models, with the XGB model achieving the highest
AUC value. Lastly, we employed SHAP to quantify the
contribution of each feature to the predictive outcome.
In the XGB model, the most important features were age,
high-sensitive CRP, right lesion, temporal lobe, and cere-
bral hemorrhage. ese key features show both consis-
tency and differences with previous research on PSCID
risk factors [16–18, 23].
Most studies agree on the close association between age

and cognitive decline. For instance, the REGARDS study
found that each additional year of baseline age increased
the likelihood of cognitive impairment by 17% during the
follow-up period [23], aligning with non-stroke popula-
tion studies that identified older age as a significant risk
factor for cognitive impairment [24]. However, Yan et
al.‘s findings suggested no correlation between age and
the occurrence of MCI after stroke [18]. A systematic
review and meta-analysis assessed the potential of vari-
ous blood-derived proteins as biomarkers for PSCI, rec-
ommending Hcy, CRP, total cholesterol, and low-density

Fig. 2 The receiver operating characteristic curves of the eight machine learning models. LR, logistic regression; XGB, extreme gradient boosting; DT,
decision tree; SVM, support vector machine; KNN, k-nearest neighbors; RF, random forest; MLP, multilayer perceptron; EN, elastic net



Page 7 of 9Wei et al. BMC Medical Informatics and Decision Making          (2024) 24:334 

lipoprotein as potential biomarkers for PSCI [25]. e
high-sensitivity CRP test, capable of measuring low con-
centrations of CRP in blood, is useful for assessing low-
grade inflammation and cardiovascular risk. A significant
association between high-sensitive CRP concentrations
and long-term cognitive decline was observed in a large
study involving 5257 participants [26], consistent with
our findings. Our research provides additional evidence

supporting high-sensitive CRP as a potential biomarker
for PSD, enhancing its potential in PSD prediction and
monitoring. No association between Hcy and PSD was
found in our study, although high Hcy levels have been
confirmed as a risk factor for cerebrovascular events and
cognitive decline [25]. e reasons for these differences
may include sample selection bias, differences in data
collection, or analytical methods.
At present, ML prediction models related to PSCID

primarily focus on PSCI. To the best of our knowledge,
this study is the first to construct and compare the per-
formance of eight different risk prediction models for
PSD. Furthermore, this research integrates ML tech-
niques with demographic and imaging features to pre-
dict PSD. However, there are several limitations to our
study that cannot be ignored. Firstly, the dataset used
in this study was sourced from patients in the geriatrics
department and those transferred to the rehabilitation
department, who may exhibit significant differences in
distributions of various demographic characteristics,

Table 2 Performances of various prediction models predicting 
PSD using a testing data set

Accuracy Sensitivity Specificity
DT 0.6391 0.5000 0.7079
ENET 0.6992 0.1136 0.9888
XGB 0.7293 0.6136 0.7865
Logistic 0.6917 0.4773 0.7978
MLP 0.7143 0.5227 0.8090
RF 0.7068 0.4091 0.8539
SVM 0.3383 0.6591 0.1798
KNN 0.6767 0.3182 0.8539

Fig. 3 The DCA curves of the eight machine learning models. LR, logistic regression; XGB, extreme gradient boosting; DT, decision tree; SVM, support 
vector machine; KNN, k-nearest neighbors; RF, random forest; MLP, multilayer perceptron; EN, elastic net
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such as age and gender, compared to the general stroke
patient population. ese disparities could potentially
limit the generalizability of the model across different
demographic groups. Secondly, this is a single-center ret-
rospective cohort study, and the data quality and diver-
sity might be affected, necessitating external validation
and optimization. irdly, not all patients underwent
all examinations, leading to missing features in some
cases. Although we excluded patients with more than
20% missing values and employed multiple imputation
for features with less than 10% missing values to mitigate
this concern, the possibility of residual effects remains.
Finally, our model has overlooked social, psychological,
and behavioral elements like social support and lifestyle,
which are crucial for understanding cognitive outcomes
after a stroke. Including these factors in future research
could enhance the model’s ability.

Conclusion
We proved that the ML model, especially the XGB
model, can accurately predict PSD and is expected to be
an effective assistant tool for the diagnosis and treatment
of PSD. Among the variables included, age and high-sen-
sitive CRP are the two most significant factors influenc-
ing the XGB model’s output. However, the efficacy of this
model in external cohorts and its potential to mitigate
the occurrence of PSD remains to be determined.
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